碳纤维复合材料构件缺陷脉冲涡流成像与图像分析的基础理论和关键技术研究

项目来源

国家自然科学基金(NSFC)

项目主持人

叶波

项目受资助机构

昆明理工大学

项目编号

51465024

立项年度

2014

立项时间

未公开

项目级别

国家级

研究期限

未知 / 未知

受资助金额

52.00万元

学科

工程与材料科学-机械设计与制造-机械结构强度学

学科代码

E-E05-E0504

基金类别

地区科学基金项目

关键词

脉冲涡流检测 ; 碳纤维复合材料构件 ; 缺陷识别 ; 图像分析 ; 无损检测 ; Nondestructive testing ; Pulsed eddy current testing ; Carbon-fiber reinforced composite material structures ; Defect detection ; Image Analysis

参与者

唐岚;李思奇;马增禄;周凯锋;董俊;曾芳;李鸣;陈飞;仲泽坤

参与机构

昆明理工大学;北京化工大学

项目标书摘要:准确检测和定量评估碳纤维复合材料构件缺陷和损伤,确保其完整、可靠、安全是许多重要领域急需解决的具有基础性、关键性和先导性的极具挑战的前沿问题。围绕病态反问题的先验统计模型及非线性优化、优质快速成像、图像分析与缺陷智能识别及定量化评估关键科学问题,主要研究内容是:①建立由碳纤维复合材料构件缺陷脉冲涡流成像与图像分析先验统计模型导引的新的非线性优化算法,为实现检测信息的优质快速处理提供理论基础;②开发TMR 阵列探头,研究优质快速的碳纤维复合材料构件缺陷脉冲涡流成像方法,以提供高质量的图像信息;③研究碳纤维复合材料构件缺陷脉冲涡流图像分析与缺陷智能识别及定量化评估方法,实现缺陷的精确定量评估;④构建原理样机,完成新理论和方法的原理性验证和工程适用性评估。最终形成完整的碳纤维复合材料构件缺陷脉冲涡流成像与图像分析的基础理论和关键技术,推动涡流检测理论和技术发展,促进碳纤维复合材料的研发及应用。

Application Abstract: Accurate detection and quantitative evaluation of defects and damages in carbon-fiber reinforced composite material structures is an essential and crucial frontier issue in a range of technological applications,such as maintaining the integrity,enhancing the safety,and assuring the reliability of structures.The scientific key problems are the prior statistical model of ill-posed inverse problems,nonlinear optimization algorithms,high quality and fast imaging,image analysis,defect intelligent identification and quantitative evaluation.The main research contents are as follows:① constructing the new nonlinear optimization algorithms guided by the prior statistical model of pulsed eddy current imaging and image analysis for detecting defects in carbon-fiber reinforced composite material structures,for providing the theoretical basis for the realization of high quality and fast processing the detection information;② developing TMR array probe,and researching on the high quality and fast pulsed eddy current imaging for detecting defects in carbon-fiber reinforced composite material structures,for providing high quality image information;③ researching on pulsed eddy current image analysis and defect intelligent identification and quantitative evaluation for carbon-fiber reinforced composite material structures,for completing accurately quantitative evaluation of defects;④ constructing the prototype for validating the novel theories and methods and evaluating the engineering suitability.Finally,currently urgent need theories and technologies of pulsed eddy current imaging and image analysis for detecting defects in carbon-fiber reinforced composite material structures are established.It will promote the theories and technologies development of eddy current testing.The study and application of carbon-fiber reinforced composite materials are also accelerated.

项目受资助省

云南省

项目结题报告(全文)

准确检测和定量评估碳纤维复合材料构件缺陷和损伤,确保其完整、可靠、安全是许多重要领域急需解决的具有基础性、关键性和先导性的极具挑战的前沿问题。项目开展了以下研究工作:①采用有限元分析法建模求解三维涡流场计算问题,为后续研究非线性优化算法、碳纤维复合材料构件缺陷脉冲涡流成像方法,缺陷智能识别及定量化评估方法、开发脉冲涡流成像系统提供理论基础。②研究了碳纤维复合材料构件缺陷脉冲涡流成像与图像分析中的先验统计模型的构建、反问题求解算法、少量数据的图像重建方法、TMR阵列探头电磁计算理论及设计方法、广义模糊优化模型与高维检测数据可视化的多核加速算法,收集了大量碳纤维复合材料构件典型缺陷脉冲涡流检测图像资料,设计、构建了本项目的缺陷图像信息数据库。③研究了由先验统计模型导引的新的非线性优化算法及其全局参数的自适应非线性估计方法、快速成像的TMR阵列探头的设计与非线性校正、涡流图像稀疏性质,进而完成相应的先验模型设计与快速优化算法,给出适用于碳纤维复合材料构件缺陷脉冲涡流图像的基于广义模糊相似性的配准测度准则,开展了碳纤维复合材料构件缺陷脉冲涡流图像隐式有效特征获取与描述的研究。④研究了局部最优解和全局最优解的性质与针对碳纤维复合材料构件缺陷脉冲涡流成像与图像分析的先验统计模型的最优解的快速收敛算法,在稀疏采样的基础上,研究了碳纤维复合材料构件缺陷脉冲涡流图像精确、快速分割方法与相似性特征提取方法和检测数据的可视化分析技术。⑤对碳纤维复合材料构件缺陷脉冲涡流检测图像进行分析推理,开展了碳纤维复合材料构件缺陷脉冲涡流成像与图像分析的实验方法和实验设计研究,建立实验验证系统,提出性能和工程适用性评估分析方法,开展科学实验,完成原理性验证。最终形成一套当前亟需的碳纤维复合材料构件稀疏脉冲涡流阵列成像的理论与方法,推动涡流检测理论和技术发展,促进碳纤维复合材料的研发及应用。

  • 排序方式:
  • 3
  • /
  • 1.Fast consensus algorithm of multi-agent systems with double gains regulation

    • 关键词:
    • Feedback;Frequency domain analysis;Software agents;consensus;Consensus algorithms;Convergence rates;Differential gain;double gains regulation;incremental PID;Local information;Regulation algorithms
    • Huang, Ling-Yun;Sun, Chao;Fan, Sha;Yang, Chun-Xi
    • 《International Journal of Control》
    • 2017年
    • 90卷
    • 5期
    • 期刊

    Two novel fast consensus algorithms based on local information of first-order discrete multi-agent systems under a directed network are proposed in this paper. By applying matrix theory and the frequency-domain analysis methods, two sufficient conditions about the convergence rate of the systems are presented, respectively, where the proportional-like gain feedback and incremental proportional–integral–differential gains feedback only with local information are added. Finally, a numerical example is given to show the double gains regulation algorithm proposed in this paper has much faster consensus rate compared with the classical consensus algorithm in the same condition for its two-degree freedom parameters.
    © 2016 Informa UK Limited, trading as Taylor & Francis Group.

    ...
  • 2.基于深度学习的涡流热成像技术在无损检测中的应用

    • 关键词:
    • 无损检测 金属板材 涡流热成像 智能识别 深度学习 卷积神经网络 自适应特征提取 基金资助:国家自然科学基金项目(51465024); 专辑:工程科技Ⅰ辑 信息科技 专题:金属学及金属工艺 计算机软件及计算机应用 自动化技术 分类号:TG115.28TP391.41TP18 手机阅读
    • 毕野;熊新;叶波;吴建德;范玉刚;高阳
    • 期刊

    设计实现了一套涡流热成像无损检测系统,对试件进行涡流加热,使用热像仪进行探测,以热图像的形式展示试件温度变化情况来表征试件的损伤特征,并使用基于深度学习网络的智能识别方法诊断试件的损伤程度。该无损探伤方法使用卷积神经网络逐层挖掘可疑缺陷区域的本质特征。实验结果表明:该系统对金属板材试件损伤程度识别的准确率能达到97.3%,证明该系统具有较高的准确率和较好的适应性。

    ...
  • 3.Thickness Measurement of Titanium Alloy Sheet Based on Eddy Current Method with a Novel Simplified Model

    • 关键词:
    • Thickness gages;Titanium alloys;Eddy current testing;Pickups;Eddy currents;Aluminum alloys;Calibration signal;Eddy current method;Electromagnetic properties;In-phase components;Industry standards;Modeling and measurement;Pick-up coil voltage;Titanium alloy sheets
    • Bao, Jun;Ye, Bo;Luo, Siqi;Wang, Xiaodong;Wu, Jiande
    • 《IEEE Transactions on Instrumentation and Measurement》
    • 2021年
    • 70卷
    • 期刊

    This article proposes a novel simplified model that describes the real part (in-phase component) of the difference in pickup coil voltage when an eddy current (EC) sensor consisting of two coils (excitation and pickup coils) is placed above the titanium (Ti) alloy sheet. A parameter that encapsulates the coil geometry factors is integrated into the classical Dodd-Deeds model, and then, the model is simplified by combining with the electromagnetic properties of Ti alloy. The use of the simplified model provides a thickness measurement method for Ti alloy sheets. The measured thickness can be calculated directly from the calibration signal by using the model, without the need to predict response by solving the forward model in advance. Experimental measurements were conducted on TC4 (Ti-6Al-4V) Ti alloy sheets of different thicknesses with a developed EC sensor and measurement system. The experiment verified the proposed model and measurement method. The experimental results shown that the maximum measurement error is less than 2.86%, which is greatly lower than the permissible error of the current industry standard. This study provides a theoretical basis and a fast method for EC thickness measurement of Ti alloy.
    © 1963-2012 IEEE.

    ...
  • 4.单向碳纤维复合材料远场涡流检测伪峰识别方法研究

    • 关键词:
    • 单向碳纤维复合材料平板;缺陷检测;远场涡流检测;二次穿透;伪峰识别
    • 张依仃,;叶波,;曾辉耀,;罗思琦,;孔琼英,
    • 《传感技术学报》
    • 2020年
    • 02期
    • 期刊

    针对单向碳纤维复合材料平板缺陷远场涡流检测存在的伪峰干扰问题,在分析远场涡流检测信号伪峰产生机理及伪峰特征的基础上,提出了利用对称双检测线圈构成远场涡流检测探头进行伪峰识别的方法,建立了利用该探头对单向碳纤维复合材料平板缺陷进行远场涡流检测的仿真模型,借助有限元方法进行仿真计算,得到了五组不同间距缺陷的检测信号,并利用所提出的伪峰识别方法对仿真计算获得的检测信号峰值进行分析识别,结果表明所提出的伪峰识别方法在不同的缺陷分布情况下都可以准确识别出伪峰和实际缺陷对应的真实峰值,从而验证了所提出的伪峰识别方法的有效性及准确性,为单向碳纤维复合材料平板缺陷远场涡流检测的伪峰消除问题提供了解决思路,有效提高了单向碳纤维复合材料平板缺陷远场涡流检测的准确性。

    ...
  • 5.A Deep Belief network and Least Squares Support Vector Machine Method for Quantitative Evaluation of Defects in Titanium Sheet Using Eddy Current Scan Image

    • 关键词:
    • Titanium sheet;Least squares approximations;Support vector machines;Image processing;Regression analysis;Eddy current testing;Eddy currents;Quality control;Deep belief network (DBN);Deep belief networks;Defect dimensions;Evaluation results;Imaging technology;Least squares support vector machines;Quantitative evaluation;Quantitative evaluation methods
    • Bao, Jun;Ye, Bo;Wang, Xiaodong;Wu, Jiande
    • 《Frontiers in Materials》
    • 2020年
    • 7卷
    • 期刊

    Titanium (Ti) is an ideal structural material whose use is gradually emerging in civil engineering. Regular defect evaluation is indispensable during the long-term use of Ti sheets, which can be performed effectively using eddy current (EC) imaging, a method of visualizing defects that is convenient for inspectors. However, as EC scan images contain abundant information and have discrepancies in terms of their quality, it is difficult to extract effective features, thus affecting the evaluation results. In this article, we propose a method that combines the EC imaging technology with a quantitative evaluation method for Ti sheet defects based on the deep belief network (DBN) and least squares support vector machine (LSSVM). A multilayer DBN is constructed to extract the effective features from EC scan images for Ti sheet defects. Based on the extracted feature vectors, a multi-objective regression model of defect dimensions is established using the LSSVM algorithm. Then, the dimensions of Ti sheet defects such as length, diameter, and depth are quantitatively evaluated by the effective features and the efficient regression model. The experimental results show that the evaluation errors for the defect lengths and depths tested are less than 3 and 5%, respectively, confirming the validity of the proposed method.
    © Copyright © 2020 Bao, Ye, Wang and Wu.

    ...
  • 6.单向碳纤维复合材料分层缺陷垂直涡流检测有限元仿真研究

    • 关键词:
    • 垂直涡流法;有限元分析;分层缺陷检测;单向碳纤维复合材料
    • 曾辉耀,;叶波,;张依仃,;陈宸,;罗思琦,
    • 《传感技术学报》
    • 2020年
    • 01期
    • 期刊

    针对单向碳纤维复合材料分层缺陷难以检测的问题,设计了一个共面三矩形线圈探头,建立了利用该探头进行单向碳纤维复合材料分层缺陷垂直涡流检测的有限元模型,并利用该模型仿真计算了存在不同厚度分层缺陷时垂直涡流检测探头输出的感应电压信号变化情况。仿真结果表明,所设计的探头可灵敏地检测出单向碳纤维复合材料分层缺陷,并且在探头扫描检测分层缺陷的过程中,探头输出的感应电压虚部会出现成对的峰值和次峰值,峰值与分层厚度成正比,次峰值对的出现位置对应于分层缺陷边缘的位置,通过对峰值大小和次峰值对的出现位置进行分析,可以实现单向碳纤维复合材料分层缺陷厚度和范围的定量化评估,为实际工程应用提供了有价值的参考。

    ...
  • 7.基于SLIC超像素算法和密度聚类的TA2钛板表面缺陷定量化评估研究

    • 关键词:
    • 涡流检测;C扫描图像;图像分割;超像素算法;密度聚类
    • 陈宸,;叶波,;邓为权,;包俊,;曾辉耀,
    • 《电子测量与仪器学报》
    • 2019年
    • 11期
    • 期刊

    由于边缘效应的影响,TA2钛板涡流C扫描图像中缺陷区域与背景区域混杂,边缘对比度低,难以实现缺陷区域定量化评估。针对以上问题,提出了一种基于简单线性代聚类(SLIC)超像素算法和密度聚类算法的涡流C扫描图像分割方法。首先对TA2钛板进行涡流无损检测,获得包含有TA2钛板表面缺陷的涡流C扫描图像;然后利用SLIC超像素算法将获得的C扫描图像预分割成若干小区域;最后通过密度聚类算法对预分割后的C扫描图像进行区域合并,得到受检测TA2钛板C扫描图像中的缺陷区域,通过对缺陷区域进行细化处理和轮廓跟踪可以得到TA2钛板缺陷区域的估计长度,实现对TA2钛板表面缺陷的定量化评估研究。实验结果表明,该方法能够有效地实现受检测的TA2钛板表面缺陷的可视化、定量化分析,与传统的图像分割方法相比分割效果更优、准确性更高。

    ...
  • 8.A novel feature extraction method of eddy current testing for defect detection based on machine learning

    • 关键词:
    • Extraction;Eddy current testing;Analytical models;Defects;Defect detection;Defect identification;Feature extraction methods;Geometric feature;High detection rate;Impedance data;Lissajous curves;Lissajous figures
    • Yin L;
    • 《NDT&E International》
    • 2019年
    • 107卷
    • 期刊

    In eddy current testing, the trajectory of the impedance data due to a defect is presented as a Lissajous curve (LC) in the complex plane. This paper proposes a novel analytical model for describing a LC. Further, a new feature extraction method is implemented which automatically computes four geometric features (amplitude, width, angle and symmetry) from Lissajous figures. In addition, six machine learning-based classifiers are used for automatic defect identification based on these features. High detection rates are achieved for both the simulated and experimental data, which demonstrates the flexibility of the analytical model and the validity of the methodology.
    © 2019 Elsevier Ltd

    ...
  • 9.基于SSDAE深度神经网络的钛板电涡流检测图像分类研究

    • 关键词:
    • 钛板;电涡流检测;自编码器;深度神经网络;分类
    • 包俊;叶波;王晓东;尹武良;徐寒扬
    • 《仪器仪表学报》
    • 2019年
    • 04期
    • 期刊

    钛板电涡流成像检测易受工业现场中的噪声影响,包含噪声的检测图像往往难以提取较好的特征,从而影响分类识别精度。针对以上问题,提出了一种基于栈式稀疏降噪自编码(SSDAE)深度神经网络的钛板缺陷电涡流检测图像分类方法。将稀疏性限制引入降噪自编码器并进行逐层无监督自学习,然后将自编码器栈式组合后添加逻辑识别(LR)层,构建出SSDAE深度神经网络,网络在有监督微调后可实现钛板缺陷电涡流图像特征自动提取与分类识别。稀疏性限制的引入提高了特征学习能力,降噪自编码器的栈式组合提高了深度网络的鲁棒性。实验结果表明,相比其他常规方法,所提出方法不仅在理想环境下有更高的分类准确率,且该方法能有效抵抗噪声,在复杂工况下能更有效地对钛板缺陷进行分类识别。

    ...
  • 10.Classification and Quantitative Evaluation of Eddy Current Based on Kernel-PCA and ELM for Defects in Metal Component

    • 关键词:
    • eddy current testing; kernel principal component analysis; featureextraction; defect classification; quantitative analysis;EXTREME LEARNING-MACHINE; CRACKS
    • Deng, Weiquan;Ye, Bo;Bao, Jun;Huang, Guoyong;Wu, Jiande
    • 《METALS》
    • 2019年
    • 9卷
    • 2期
    • 期刊

    Eddy current testing technology is widely used in the defect detection of metal components and the integrity evaluation of critical components. However, at present, the evaluation and analysis of defect signals are still mostly based on artificial evaluation. Therefore, the evaluation of defects is often subjectively affected by human factors, which may lead to a lack in objectivity, accuracy, and reliability. In this paper, the feature extraction of non-linear signals is carried out. First, using the kernel-based principal component analysis (KPCA) algorithm. Secondly, based on the feature vectors of defects, the classification of an extreme learning machine (ELM) for different defects is studied. Compared with traditional classifiers, such as artificial neural network (ANN) and support vector machine (SVM), the accuracy and rapidity of ELM are more advantageous. Based on the accurate classification of defects, the linear least-squares fitting is used to further quantitatively evaluate the defects. Finally, the experimental results have verified the effectiveness of the proposed method, which involves automatic defect classification and quantitative analysis.

    ...
  • 排序方式:
  • 3
  • /