基于Ti4O7/rGO双导电网络气凝胶的柔性自支撑锂硫电池正极材料研究

项目来源

国家自然科学基金(NSFC)

项目主持人

卢赟

项目受资助机构

北京理工大学

项目编号

51802019

立项年度

2018

立项时间

未公开

项目级别

国家级

研究期限

未知 / 未知

受资助金额

27.00万元

学科

工程与材料科学-无机非金属材料-无机非金属能量转换与存储材料

学科代码

E-E02-E0208

基金类别

青年科学基金项目

关键词

锂硫电池 ; 双导电网络 ; 气凝胶 ; 柔性自支撑正极 ; 性能研究 ; 锂硫电池 ; 双导电网络 ; 气凝胶 ; 柔性自支撑正极 ; 性能研究

参与者

王敬;陈来;赵双义;何桃;贾盈娜;姚金雨;刘兴兴

参与机构

北京理工大学;中国工程物理研究院化工材料研究所;北京理工大学重庆创新中心

项目标书摘要:气凝胶是具有高比表面积和高度多孔的三维纳米材料,一般通过干燥湿凝胶前体制备。石墨烯是具有优良导电性和柔韧性的二维纳米碳材料。石墨烯的氧化物GO由于富有反应性的含氧官能团且能够良好地分散在溶剂中而常被用作合成石墨烯气凝胶的前体。GO可通过简单的方法还原成为导电的rGO。Ti4O7是一种具有导电性的Magnéli相氧化物,能牢固吸附多硫化物及Li2S并促进其在锂硫电池充放电中氧化还原反应的进行。本项目从Ti4O7/rGO双导电网络气凝胶的设计出发,以获得无需额外粘合剂和集流体且具有更好的循环稳定性、更高容量和库伦效率的柔性自支撑Ti4O7/rGO-S正极为目的,探索制备双导电网络气凝胶的工艺路线和合成条件,考察其结构与物理化学性能,尝试建立合成参数—结构—物理化学性能之间的关系;同时研究Ti4O7/rGO-S正极的电化学过程,阐述合成工艺参数和组成比例等因素对其电化学性能的影响。

Application Abstract: Aerogels,highly porous three-dimensional nanomaterials with ultrahigh specific surface area,are generally prepared by drying wet gel precursors.Graphene is a two-dimensional carbon nanomaterial with superior conductivity,strength and flexiblity.Graphene oxide(GO)is often used as precursor for graphene aerogel preparations due to its abundant active oxide functional groups and perfect dispersion in solvents.GO is feasible to be reduced into conductive reduced graphene oxide(rGO)by simply methods.Ti4O7,a Magnéli pahse oxide,is testified that it can adsorb polysulfide and Li2S and promote their redox reaction during the charge-discharge cycling of lithium-sulfur battery.In our present proposal,starting from design of the Ti4O7/rGO aerogel with bicontinuous conductive network,we are aiming at providing a flexible freestanding Ti4O7/rGO-S cathode which is free of additional adhesive and current collector but possesses improved capability,cycling stability and Coulombic efficiency.During running this proposal,the optimal parameters and conditions for synthesizing the Ti4O7/rGO aerogels with bicontinous conductive network will be set up,the network structure and physicochemical properties of the Ti4O7/rGO aerogels will be investigated,the relationship among synthetic conditions-network structure-physicochemcial properties of Ti4O7/rGO aerogels will be determined.At the same time,electrochemical behavior of the Ti4O7/rGO-S cathode will be investigated and the effect of the synthetic parameters and composition ratios on the electrochemical properties will be clarified.

项目受资助省

北京市

项目结题报告(全文)

锂硫电池由于具有高的理论比容而被认为是最具潜力的新一代二次电池之一,但其实际应用受到多硫化物溶解穿梭和反应动力学迟缓等问题的限制。为了改善这些问题并应对柔性电子器件发展的迫切需求,本项目首先通过水热法制备了有机钛/还原氧化石墨烯复合水凝胶,进而通过冷冻干燥和高温热处理制备了含有Ti4O7的TixOy/rGO弹性双导电复合气凝胶作为高性能柔性自支撑硫正极载体材料。系统研究了反应物浓度和反应温度对气凝胶的组成、结构和机械性能的影响,提出了优化的TixOy/rGO复合气凝胶的制备工艺。研究结果表明,TixOy尤其是具有电子导电性并对多硫化物的电化学氧化还原具有催化作用的Ti4O7与形成三维多孔框架的rGO协同作用,使锂硫电池的电化学性能得到显著提升。此外,还制备了一系列无机或有机功能组分修饰的功能碳材料用作锂硫电池正极载体或功能插层,对于锂硫电池性能的改善也呈现明显的效果。

  • 排序方式:
  • 2
  • /
  • 3.Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries

    • 关键词:
    • lithium-sulfur battery; element doping; carbonaceous materials;adsorption; shuttle effect;HONEYCOMB-LIKE NITROGEN; RICH CATHODE MATERIAL; HIGH-ENERGY DENSITY;POROUS CARBON; BIOMASS WASTE; GRAPHENE; COBALT; POLYSULFIDE; INTERLAYER;POLYHEDRA
    • Lu, Yun;Shi, Hongjuan;Su, Yuefeng;Zhao, Shuangyi;Chen, Lai;Wu, Feng
    • 《PROGRESS IN CHEMISTRY》
    • 2021年
    • 33卷
    • 9期
    • 期刊

    The blossoming of mobile electronic devices, plug-in electric vehicles and stationary energy storage have triggered the urgent demand for the exploration of the energy storage systems with high energy density and long cycle life. Lithium-sulfur battery is regarded as one of the most promising candidates of the next-generation rechargeable batteries, since the active substance sulfur is low cost and possesses high theoretical energy density of 2600 Wh.kg(-1). However, the practical applications of lithium-sulfur battery are hindered by a series of severe problems, which are caused by the insulative nature of sulfur and its discharge products, and the dissolution and shuttling of polysulfides. Carbonaceous materials are generally used as sulfur hosts to improve the conductivity of the cathode. Regrettably, due to the weak interaction between non-polar carbonaceous materials and polar polysulfides, the carbonaceous materials can inhibit polysulfides only by limited physical adsorption and restrictions, thus the dramatic capacity decline derived from the notorious "shuttling effect" remains insufficiently resolved. Introducing polar or chemical adsorption sites to carbonaceous materials by element doping, such as N, S, Co and B doping, can greatly enhance the adsorption capacity of carbonaceous materials to polysulfides, so as to sufficiently improve the cycling stability of the cell. Moreover, element doping may improve the electronic conductivity of carbonaceous materials by changing their electronic structure, thus effectively increasing the utilization ratio of the active materials. This article reviews the elements doping commonly applied in carbonaceous materials such as porous carbon, carbon nanotubes and graphene for lithium-sulfur batteries, wherein single-element doping, dual-element doping, and multi-element doping are introduced separately. The effects of different doping elements on performance of carbonaceous materials are analyzed. And the development direction of element-doped carbonaceous materials in lithium-sulfur batteries are prospected.

    ...
  • 4.Ultrathin 3 V Spinel Clothed Layered Lithium-Rich Oxides as Heterostructured Cathode for High-Energy and High-Power Li-ion Batteries

    • 关键词:
    • Li-ion batteries; Heterostructure; Layered compounds; Spinel phases;Electrochemistry
    • Dai, Liqin;Li, Ning;Chen, Lai;Su, Yuefeng;Chen, Cheng-Meng;Su, Fangyuan;Bao, Liying;Chen, Shi;Wu, Feng
    • 《CHINESE JOURNAL OF CHEMISTRY》
    • 2021年
    • 39卷
    • 2期
    • 期刊

    Main observation and conclusionIn an attempt to overcome the drawbacks of high-capacity layered lithium-rich cathodes xLi(2)MnO(3)center dot(1-x) LiMO2 (0 < x < 1, M = Mn, Ni, and Co), the spinel clothed layered heterostructured materials, x'Li4Mn5O12 center dot(1-x') Li[Li0.2Mn0.55Ni0.15Co0.1]O-2 (x' = 0.01, 0.03, 0.05) have been proposed and synthesized as high-performance cathode materials for high-energy and high-power Li-ion batteries. Based on the characterizations of X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman scattering spectroscopy, it is indicated that ultrathin 3 V spinel Li4Mn5O12 has been successfully clothed on the layered lithium-rich cathode. Electrochemical tests demonstrate the sample 0.01Li(4)Mn(5)O(12)center dot 0.99 Li[Li0.2Mn0.55Ni0.15Co0.1]O-2 with an ultrathin clothing layer of spinel phase, exhibits the highest reversible capacity of 289.4 mAh g(-1) and maintains 259.8 mAh g(-1) after 80 cycles at 0.1 C rate. Meanwhile, it delivers outstanding rate discharge capacities of 229.4 mAh g(-1) at 1 C, 216.8 mAh g(-1) at 2 C and 184.4 mAh g(-1) at 5 C as well as alleviated voltage fade. It is believed the ultrathin clothing spinel layer plays a vital role in the modification of the materials kinetics, and structural and electrochemical stability of the heterostructured cathode.[GRAPHICS].

    ...
  • 6.基于Ti4O7/rGO双导电网络气凝胶的柔性自支撑锂硫电池正极材料研究结题报告

    • 卢赟;
    • 《北京理工大学;》
    • 2021年
    • 报告

    锂硫电池由于具有高的理论比容而被认为是最具潜力的新一代二次电池之一,但其实际应用受到多硫化物溶解穿梭和反应动力学迟缓等问题的限制。为了改善这些问题并应对柔性电子器件发展的迫切需求,本项目首先通过水热法制备了有机钛/还原氧化石墨烯复合水凝胶,进而通过冷冻干燥和高温热处理制备了含有Ti4O7的TixOy/rGO弹性双导电复合气凝胶作为高性能柔性自支撑硫正极载体材料。系统研究了反应物浓度和反应温度对气凝胶的组成、结构和机械性能的影响,提出了优化的TixOy/rGO复合气凝胶的制备工艺。研究结果表明,TixOy尤其是具有电子导电性并对多硫化物的电化学氧化还原具有催化作用的Ti4O7与形成三维多孔框架的rGO协同作用,使锂硫电池的电化学性能得到显著提升。此外,还制备了一系列无机或有机功能组分修饰的功能碳材料用作锂硫电池正极载体或功能插层,对于锂硫电池性能的改善也呈现明显的效果。

    ...
  • 7.Urea-assisted mixed gas treatment on Li-Rich layered oxide with enhanced electrochemical performance

    • 关键词:
    • Lithium-rich;oxides;Pre-generated;oxygen;vacancies;Oxygen-deficient;Voltage;decay
    • Liying Bao;Lei Wei;Nuoting Fu;Jinyang Dong;Lai Chen;Yuefeng Su;Ning Li;Yun Lu;Yongjian Li;Shi Chen;Feng Wu
    • 《能源化学:英文版》
    • 2022年
    • 3期
    • 期刊

    Lithium-rich manganese-based oxides(LRMOs)have been considered as one of the most promising cathode materials owing to their superior specific capacity and high operating voltage.However,their largescale commercial ap

    ...
  • 8.Renovating the electrode-electrolyte interphase for layered lithium- & manganese-rich oxides

    • 关键词:
    • Electrochemical electrodes;Fluorine compounds;Lithium compounds;Lithium-ion batteries;Deterioration;Cathodes;Cost effectiveness;Change mechanisms;Critical component;Electrochemical cycle;Electrochemical performance;Electrolyte salts;Lithium phosphate;Performance decay;Renovation techniques
    • Wu, Feng;Li, Weikang;Chen, Lai;Su, Yuefeng;Bao, Liying;Bao, Wurigumula;Yang, Zeliang;Wang, Jing;Lu, Yun;Chen, Shi
    • 《Energy Storage Materials》
    • 2020年
    • 28卷
    • 期刊

    Layered lithium- & manganese-rich oxides (LMR), with their high capacity and cost-effective advantage, are considered as a potent alternative of the next-generation cathode material for lithium-ion batteries. The behaviors of the electrode-electrolyte interphase (EEI) are crucial to the electrochemical properties of LMR as a cathode material operating at wide voltage regions (from 2 to 4.8 V). Nonetheless, the understanding of EEI for LMR materials and the related renovation techniques are somewhat lacking. Herein, we gain insight into the EEI change mechanism for LMR materials during long electrochemical cycles and demonstrate a renovating method to mitigate its deterioration. As for the pristine electrode based on LMR materials, the increasing amount of POxFyz− and metal fluorides lead to unpleasant degradation for both the EEI and the active material particle, causing evident performance decay. Whereas, the lithium phosphate, if employed in the electrode, effectively enhances the lithium ions transfer, impedes the decomposition of electrolyte salt, and leads to a more stable EEI, thus promoting the electrochemical performances of LMR materials. All results indicate that the EEI should be one of the critical components for comprehensively understanding the LMR material, and the success renovation by the lithium phosphate offers a new orientation for those intrinsic drawbacks of LMR material. © 2019

    ...
  • 10.元素掺杂碳基材料在锂硫电池中的应用

    • 关键词:
    • 锂硫电池;元素掺杂;碳基材料;吸附作用;穿梭效应
    • 卢赟;史宏娟;苏岳锋;赵双义;陈来;吴锋
    • 《化学进展》
    • 2021年
    • 09期
    • 期刊

    可移动电子设备、电动汽车及站式储能的蓬勃发展对具有高能量密度和长循环寿命的储能体系的开发提出了迫切需求。锂硫电池由于活性物质硫成本低廉并具有高理论能量密度(2600 Wh·kg-1),成为最具希望的下一代可充电电池。但是,硫及其放电产物导电性差以及多硫化物溶解穿梭导致的一系列严重问题制约了锂硫电池的实际应用。碳基材料通常被用作硫载体以改善正极的导电性,然而,非极性碳材料与极性多硫化物的相互作用较弱,对于多硫化物仅起到有限的物理吸附和阻挡作用,穿梭效应所导致的电池容量严重衰减问题难以得到有效改善。通过杂原子如N、S、Co、B等的掺杂可在碳材料上引入极性或化学吸附位点,大大增强了碳材料对于多硫化物的吸附能力,有效改善了电池的循环稳定性,并且由于掺杂改变了碳材料的电子结构,甚至可以提升碳材料的电子导电性,从而提高了活性物质的利用率。本文对锂硫电池中多孔碳、碳纳米管以及石墨烯等碳基材料常用的元素掺杂进行了介绍,其中包括单元素掺杂、双元素掺杂和多元素掺杂,分析了不同掺杂元素对碳基材料性能的影响,并对元素掺杂碳基材料在锂硫电池中的发展前景进行了展望。

    ...
  • 排序方式:
  • 2
  • /