煤粉燃烧中热解气与氨复合还原超低NOx技术

项目来源

国家重点研发计划(NKRD)

项目主持人

于娟

项目受资助机构

上海交通大学

项目编号

2018YFB0604202

立项年度

2018

立项时间

未公开

研究期限

未知 / 未知

项目级别

国家级

受资助金额

715.00万元

学科

煤炭清洁高效利用和新型节能技术

学科代码

未公开

基金类别

未公开

关键词

未公开

参与者

朱志祥;张健;毕德贵

参与机构

上海交通大学机械与动力工程学院

项目标书摘要:根据任务书要求,开展了六部分的研究工作并得出相关结论:(1)选取典型煤种,研究C、N、O不同元素在煤中的主要赋存形态。通过热解实验考察水煤浆浓度、热解温度等参数对活性组份的影响。实验结果表明:在温度恒定的条件下,随水煤浆浓度的增大,CO、CH4和煤焦的含量逐渐升高,而H2和CO2的含量逐渐降低;在水煤浆浓度恒定的条件下,随温度的升高,有效气的含量均有明显的上升。(2)开展50MWth空气深度分级与烟气再循环对NOx排放影响的数值模拟研究。增大OFA风率可以降低炉膛出口NOx的排放。当OFA风率增大到30%时,脱硝效率增加了37.8%,基本与OFA风率为40%时效果相同。考虑到锅炉效率与NOx排放环保指标,确定最佳的OFA风率为30%。在SOFA风中喷射一定量的循环烟气可提高风速,对主燃区温度影响不大,同时可以有效促进炉内CO的燃尽。采用烟气再循环技术可以降低NOx排放。烟气再循环率越高,脱硝效率越高。综合考虑炉膛温度对锅炉着火以及燃烧充分性等方面,烟气再循环率在15%~20%之间为锅炉NOx超低排放的最佳工况。(3)设计出带有烟气保护的新型主燃区脱硝喷枪。新型脱硝喷枪的保护气采用轻度旋流设计,可提高喷射气流的刚性,有利于还原气进入炉膛的火焰中心;保护气的喷枪采用15°-30°叶片倾角,避免过大的旋流强度引起的中心回流区的出现。(4)搭建一维管式沉降炉实验平台,研究过量空气系数(氧浓度)、温度、还原剂浓度、停留时间对氮氧化物排放的影响,获得热解气与氨复合还原NOx技术设计关键参数,即高温痕量氧条件更有利于NOx的脱除;通过数值计算,研究了空气深度分级条件下煤粉燃烧中NOx分布规律:较高的OFA风率、较低的过量空气系数和烟气再循环均可使炉内整体NOx整体浓度降低。(5)完成50MWth热解气与氨复合还原NOx技术整体工艺的设计,完成水煤浆制浆/储浆系统设计及选型、热解反应器、微油点火装置的研发工作,确定了50MWth锅炉本体改造方案,完成烟气再循环系统的改造工程。(6)制订300MW电站煤粉锅炉复合还原超低NOx技术的初步应用方案,并对其经济性进行了评估。

项目受资助省

上海市

  • 排序方式:
  • 1
  • /
  • 1.Study on Characteristics and Influencing Factors of Coal-Water Slurry Pyrolysis

    • 关键词:
    • Coal combustion;Residence time distribution;Bituminous coal;CH 4;Coal-water slurry;Efficient combustions;High frequency HF;High-frequency heating furnace;Pyrolysis gas;Pyrolysis products;Pyrolysis temperature;Temperature increase;Volatile
    • Feng, Fan;Li, Boyang;Yu, Juan;Zhang, Yao;Lin, Chen;Zhang, Zhongxiao
    • 《9th International Symposium on Coal Combustion, ISCC 2019》
    • 2022年
    • July 21, 2019 - July 24, 2019
    • Qingdao, China
    • 会议

    The distribution, composition and yield of coal-water slurry pyrolysis products have an important impact on the efficient combustion/gasification of coal-water slurry. In this paper, the coal-water slurry made of Shenmu coal (bituminous coal) is rapidly pyrolyzed by a high-frequency heating furnace, and the yield, composition and composition of pyrolysis gas were measured and analyzed. The effects of pyrolysis temperature, heating rate and residence time on the pyrolysis characteristics of coal-water slurry were studied. The results have shown that as the temperature increases, the yields of volatile matters and pyrolysis gas continue to increase. The compositions of pyrolysis gas are mainly H2, CO, CH4 and CO2. With the increase of temperature, the yields of H2, CO and CH4 increase first and then decrease, and peaks appear at around 1100℃. The CO yield continues to increase with increasing temperature. The rate of temperature increase affects the yield of volatiles. The research results provide a reference for understanding and mastering the formation characteristics of primary pyrolysis products of coal-water slurry. © 2022, Tsinghua University Press.

    ...
  • 2.Effects of High Temperature on NH/NO-3 Reactions in the Absence of Oxygen

    • 关键词:
    • Ammonia;Denitrification;Pyrolysis;Reduction;Efficiency;Nitrogen oxides;Chemistry mechanism;Denitrification efficiencies;Highest temperature;Industrial processing;NO x;NO x reduction;Processing parameters;Rate of productions;Reduction efficiency;Residence time
    • Zhu, Zhixiang;Bi, Degui;Yu, Juan;Zhang, Zhongxiao;Lin, Chen
    • 《9th International Symposium on Coal Combustion, ISCC 2019》
    • 2022年
    • July 21, 2019 - July 24, 2019
    • Qingdao, China
    • 会议

    The influence of industrial processing parameters, especially high temperature, on NOx abatement in the absence of oxygen has been experimentally. NOx reduction efficiency is significantly promoted with increasing residence time and NSR and optimal residence time and NSR are 0.7s and 1.5, respectively, when temperature exceeds 1400 ℃. NOx reduction is strongly dependent on temperature. When temperature is lower than 1000 ℃, NO consumption is hindered due to lack of O radicals. The denitrification efficiency is significantly promoted with the increase of temperature because thermal decomposition of CO2 and NO is quite sensitive to temperature. However, NO formation from pyrolysis of HNO begins plays an important role since temperature exceeds 1400 ℃, which results in decline in NOx reduction efficiency. And the peak value of NO reduction efficiency can reach almost 100% at temperature range of 1300–1400 ℃ with NSR of 1.5. Four chemistry mechanisms have been adopted to simulate NOx reduction by ammonia. Validation shows that results calculated by POLIMI chemistry mechanism agrees better with experimental data than other 3 mechanisms. © 2022, Tsinghua University Press.

    ...
  • 排序方式:
  • 1
  • /