重症和手术监护临床大数据集支持系统
项目来源
国(略)研(略)((略)D(略)
项目主持人
易(略)
项目受资助机构
中(略)解(略)三(略)学
立项年度
2(略)
立项时间
未(略)
项目编号
2(略) YFC0116702
项目级别
国(略)
研究期限
未(略) (略)
受资助金额
4(略)0(略)
学科
数(略)装(略)
学科代码
未(略)
基金类别
“数(略)装(略) ”重点专项
关键词
危(略)件(略)大(略);(略)系(略) (略)t(略)l(略)i(略)e(略)t(略) (略) (略)a(略)S(略)o(略)s(略)e(略)
参与者
杨(略)
参与机构
未(略)
项目标书摘要:面向(略)类型多样化、关联关(略)等内在的复杂性使得(略)理解等环节存在巨大(略)源异构数据采集、时(略)隐私控制技术、危重(略)呼衰、心衰、肝衰、(略)示及其标注方法等研(略)据集。在构建重症和(略)持系统中,本课题通(略)床数据(HIS、E(略)时序关系估计及交叉(略)储策略,建设重症和(略)内部服务、成员服务(略)实现分级脱密与脱密(略)术患者临床大数据集(略)发提供数据支持服务
Applicati(略): Facing (略)f monitor(略)ents,the (略)mplexity (略)lection,s(略)rse types(略)us correl(略)neven qua(略)the perce(略)ssion and(略)ing of mo(略)ta a huge(略)The proje(略)ted the m(略)linical s(略)set by ca(略)studies o(略)rce heter(略)ta collec(略) synchron(略)hnology,d(略) and priv(略) technolo(略)tion and (略) critical(略)ents(asph(略)inting,re(略)ailure,he(略),liver fa(略) failure,(略)death),et(略)ucting a (略)ical and (略)tients in(略) sets to (略)tem,this (略)gh the re(略)onitoring(略)ther clin(略)hs,EMR,PA(略)the seque(略)ionship b(略)mated and(略)rences,an(略)ish adapt(略)hical sto(略)gy,the co(略)of severe(略)atabase,a(略) care for(略)ervice an(略)rvice,ind(略)ces,resea(略)s realize(略)ification(略)f the thi(略)e audit m(略)nstructio(略)ive and s(略)ients cli(略)rting sys(略)ge data s(略)data supp(略) front-en(略)velopment(略)
项目受资助省
重(略)
1.重症和手术监护临床大数据集支持系统中期报告(Clinical large data set support system for intensive care and surgical care)
- 关键词:
- 危重症事件、大数据、支持系统、Critically ill events、Big data、Support system
- 易斌;
- 《中国人民解放军第三军医大学;》
- 2019年
- 报告
面向各类监护仪器,采集数据类型多样化、关联关系繁杂化、质量良莠不齐等内在的复杂性使得监护数据的感知、表达和理解等环节存在巨大的挑战。项目通过开展多源异构数据采集、时序同步技术、数据质量与隐私控制技术、危重不良事件(窒息、昏厥、呼衰、心衰、肝衰、肾衰、脓毒症、死亡)表示及其标注方法等研究,构建监护临床样本数据集。在构建重症和手术患者临床大数据集支持系统中,本课题通过研究监护数据与其它临床数据(HIS、EMR、PACS 等)的时序关系估计及交叉参照,建立自适应分级存储策略,建设重症和手术监护临床数据库,对内部服务、成员服务、行业服务、科研服务等实现分级脱密与脱密审计机制,构建重症和手术患者临床大数据集支持系统,为前端系统开发提供数据支持服务 Facing all kinds of monitoring instruments,the inherent complexity of data collection,such as diverse types,multifarious correlation and uneven quality,makes the perception,expression and understanding of monitoring data a huge challenge.The project constructed the monitoring clinical sample data set by carrying out studies on multi-source heterogeneous data collection,timing synchronization technology,data quality and privacy control technology,presentation and labeling of critical adverse events(asphyxiation,fainting,respiratory failure,heart failure,liver failure,renal failure,sepsis and death),etc.In constructing a severe clinical and surgical patients in large data sets to support system,this topic through the research on monitoring data and other clinical data(ihs,EMR,PACS,etc.)of the sequential relationship between estimated and cross references,and to establish adaptive hierarchical storage strategy,the construction of severe clinical database,and surgical care for internal service and member service,industry services,research services realizes the classification to take off the thick and dense audit mechanism,construction of intensive and surgical patients clinical supporting system for large data set,provide data support for the front-end system development services
...