新型纳米多孔材料在CO2减排中的机理与应用研究

项目来源

湖(略)然(略)金

项目主持人

刘(略)

项目受资助机构

华(略)大(略)

立项年度

2(略)

立项时间

未(略)

项目编号

2(略)CFA046

项目级别

省(略)

研究期限

未(略) (略)

受资助金额

2(略)0(略)

学科

资(略)境

学科代码

未(略)

基金类别

杰(略)

关键词

C(略)附(略)吸(略) (略)获(略);(略)有(略)材(略) (略)响(略)C(略)a(略)r(略)o(略) (略)o(略)i(略)m(略)a(略)m(略)c(略)u(略)p(略)o(略)n(略);(略)t(略)o(略)n(略)f(略)e(略)k(略) (略)e(略)s(略)f(略)

参与者

叶(略)

参与机构

未(略)

项目标书摘要:金属(略))是新型纳米多孔材(略)可根据实际需要进行(略)CO2吸附及分离性(略)下一代CO2捕获材(略)示其捕获机理。由于(略)影响CO2捕获效果(略)限于实验现象观测和(略)面深入研究其作用机(略)拟相结合的方法,将(略)融入到燃烧学中,对(略)的捕获机理和性能进(略)子水平上剖析相互作(略)用密度泛函理论研究(略)材料的结构与其吸附(略)示了CO2在MOF(略)究了CO2在沸石咪(略)为,以及CO2在其(略)行为。采用巨正则蒙(略)下CO2在ZIFs(略)了官能团和金属负载(略)力的影响,提出了改(略)的有效方法。进一步(略)金属有机骨架材料对(略)不同的吸附机理进行(略)验结果进行对比验证(略)度概念,建立了一种(略)OFs材料对CO2(略)设计和筛选具有高C(略)提供指导。采用巨正(略)了烟气杂质(如H2(略)CO2吸附及CO2(略)同时采用密度泛函理(略),对MOFs材料在(略)有重要意义,为MO(略)捕获领域的应用提供(略)

Applicati(略): The str(略)erty rela(略)nd adsorp(略)ism of CO(略)entative (略)nvestigat(略) density (略)theory.Th(略)ption beh(略)olitic im(略)rameworks(略)ell as th(略) behavior(略)-dimensio(略)re invest(略)adsorptio(略) of CO2 i(略)ifferent (略)re descri(略)d canonic(略)rlo(GCMC)(略).The effe(略)porating (略)oups and (略)l atom on(略)tion capa(略) pressure(略)sised,and(略)ive ways (略)CO2 captu(略)es by che(略)ications (略)ted.The a(略)ehavior o(略)Fs with o(略)ites were(略)vestigate(略)dsorption(略)were deta(略)ised.Stro(略)site mola(略)oposed to(略)e CO2 ads(略)ough the (略) validati(略)theoretic(略)on and ex(略)esults.Th(略) of MOFs (略)ed to sel(略)s with hi(略)ure perfo(略)effects o(略)or and ot(略)urities(s(略)O2,NOx)on(略)tion and (略)ration we(略)ated by G(略)ions.The (略)of these (略)e also in(略)by DFT ca(略)The work (略)ed by mul(略)nary stud(略)ustion sc(略)um chemis(略)ar simula(略)terial sc(略)esults pr(略) for mole(略)n the new(略) material(略)sfy the r(略) of post-(略)CO2 captu(略)

项目受资助省

湖(略)

  • 排序方式:
  • 1
  • /
  • 1.新型纳米多孔材料在CO2减排中的机理与应用研究结题报告(Mechanism and application studies of new nanoporous materials for CO2 reduction)

    • 关键词:
    • CO2吸附、吸附机理、捕获性能、金属有机骨架材料、烟气影响、CO2 adsorption、adsorption mechanism、capture performance、metal organic frameworks、flue gas effect
    • 刘晶;
    • 《华中科技大学;》
    • 2017年
    • 报告

    金属有机骨架材料(MOFs)是新型纳米多孔材料,结构多样,表面特性可根据实际需要进行调控,且具有极为优异的CO2吸附及分离性能,被认为是极具潜力的下一代CO2捕获材料。关键问题在于深入揭示其捕获机理。由于MOFs材料种类多样、影响CO2捕获效果的因素众多,现有研究受限于实验现象观测和数据积累,难以从微观层面深入研究其作用机理。本项目采用实验和模拟相结合的方法,将量子化学和分子模拟交叉融入到燃烧学中,对CO2在MOFs材料中的捕获机理和性能进行系统深入的研究,从分子水平上剖析相互作用的本质和微观机理。采用密度泛函理论研究了具有代表性的MOFs材料的结构与其吸附CO2性能间的关系,揭示了CO2在MOFs材料中的吸附机理。研究了CO2在沸石咪唑酯骨架材料中的吸附行为,以及CO2在其独特的一维孔道内的扩散行为。采用巨正则蒙特卡洛方法描述不同压力下CO2在ZIFs孔道内的吸附现象。分析了官能团和金属负载对材料低压CO2吸附能力的影响,提出了改性增强其CO2捕获性能的有效方法。进一步研究了具有裸露金属位的金属有机骨架材料对CO2的吸附行为,对其不同的吸附机理进行详细阐释。理论模拟与实验结果进行对比验证,提出了强吸附位摩尔浓度概念,建立了一种快速删选具有强吸附位MOFs材料对CO2吸附能力的模型,为定向设计和筛选具有高CO2吸附能力的MOFs提供指导。采用巨正则蒙特卡洛计算方法预测了烟气杂质(如H2O、O2和SO2等)对CO2吸附及CO2/N2分离能力的影响,同时采用密度泛函理论研究该影响的具体机理,对MOFs材料在实际烟气工况下的应用具有重要意义,为MOFs材料在燃烧后CO2捕获领域的应用提供指导。 The structure-property relationships and adsorption mechanism of CO2 in representative MOFs were investigated by using density functional theory.The CO2 adsorption behavior in zeolitic imidazolate frameworks(ZIFs),as well as the diffusion behavior in the one-dimensional pore were investigated.The adsorption phenomena of CO2 in ZIFs at different pressure were described by grand canonical Monte Carlo(GCMC)simulations.The effect of incorporating function groups and doping metal atom on CO2 adsorption capacity at low pressure were analysised,and the effective ways to enhance CO2 capture properties by chemical modifications were presented.The adsorption behavior of CO2 in MOFs with open metal sites were further investigated,and the adsorption mechanism were detailed analysised.Strong binding site molarity was proposed to predict the CO2 adsorpiton through the comparative validation between theoretical simulation and experiament results.The screening of MOFs was performed to select the MOFs with high CO2 capture performance.The effects of water vapor and other gas impurities(such as O2,SO2,NOx)on CO2 adsorption and CO2/N2 separation were investigated by GCMC simulations.The mechanisms of these effects were also investigated by DFT calculations.The work was performed by multi-disciplinary studies of combustion science,quantum chemistry,molecular simulation and material science.The results provides base for molecular design the new nanoporous materials that satisfy the requirements of post-combustion CO2 capture.

    ...
  • 排序方式:
  • 1
  • /