智能配电网态势感知时滞不确定性的区间仿射方法研究

项目来源

国家自然科学基金(NSFC)

项目主持人

葛磊蛟

项目受资助机构

天津大学

项目编号

51807134

立项年度

2018

立项时间

未公开

研究期限

未知 / 未知

项目级别

国家级

受资助金额

25.00万元

学科

工程与材料科学-电气科学与工程-电力系统与综合能源

学科代码

E-E07-E0704

基金类别

青年科学基金项目

关键词

配电系统 ; 时滞电力系统 ; 配电网调度 ; 态势感知 ; 区间仿射方法 ; 配电系统 ; 时滞电力系统 ; 配电网调度 ; 态势感知 ; 区间仿射方法

参与者

侯恺;王绍敏;刘立扬;董逸超;王瀚;赵晨睿;刘浩武

参与机构

天津大学

项目标书摘要:智能配电网态势感知(Situation Awareness of Smart Distribution Network,SASDN)是配电网稳定运行和精准调度的基础。然而,SASDN面临着通信延时、科学计算耗时、不同子站系统响应时长不一等所引起的一系列时滞不确定性问题,常导致智能配电网精准调度失效,限制了其应用范围。针对该问题,本项目拟采用区间仿射方法研究SASDN时滞不确定性。首先,构建SASDN时滞区间仿射模型,深入探索SASDN时滞的作用机理;其次,基于Lyapunov直接法,探索SASDN时滞区间仿射模型的可行解判定方法,并分析其参数鲁棒性,从而获知时滞参数的安全区间;最后,探索SASDN时滞区间仿射模型参数灵敏度分析方法,揭示SASDN非时滞参数对时滞参数的影响规律,提升所提模型的适应性。项目成果将为智能配电网的精准调度和广域协调控制提供理论依据。

Application Abstract: The situation awareness of smart distribution network(SASDN)is the basis of stable operation and precise scheduling of power distribution networks.However,the SASDN has a series of time-delay uncertainty problems,due to communication delay,long computation time and different response time of different substation system.With these problems,SASDN often lead to precise scheduling failure of smart distribution network,limiting its application.In response to these problems,the interval affine method will be used to study the time-delay uncertainty of SASDN in this project.Firstly,the time-delay interval s model of SASDN is constructed to explore the impact of time-delay on SASDN.Secondly,the solution determination method is developed for the time-delay interval affine model of SASDN based on Lyapunov direct method.By using the proposed method,the robustness of the relevant parameters and the interval solution of the time-delay parameter are obtained for the time-delay interval affine model of SASDN.Finally,the sensitivity analysis is conducted to investigate the effects of non-time delay parameters on the time delay interval affine model of SASDN,and the adaptability of the model is improved.The bribe of this project will assist in building up theoretical foundations for the precise scheduling and wide area coordinated control of smart distribution networks.

项目受资助省

天津市

项目结题报告(全文)

由于配电网直接面向用户终端,其完备性将直接影响着终端用户的供电可靠性和用电质量,重要性不言而喻。随着大量可再生能源在配电网中的接入,传统配电网成为有源配电网。为了应对有源配电网所面临的挑战和满足用户日益增长的供电质量和可靠性要求,发展智能配电网已成为共识。在智能配电网条件下,系统采集和处理的数据呈海量增长,并且受用户随机需求响应、客户多样化需求、应急减灾等因素影响,配电网运行趋于复杂多样,对配电管理的要求日趋提高。现有的配电运行态势感知体系在计算速度、安全性评估、可视化、通信网络等诸多环节上均难以满足智能配电网的发展。其主要难点包括:针对配电系统量测装置覆盖率的不足,如何提升智能配电网的量测数据规模;针对多种能源形式接入的智能配电网,如何快速觉察智能配电网状态;如何提升智能配电网态势觉察数据处理性能。开展智能配电网态势感知理论、模型和方法研究,提高智能配电网对综合能源的接纳能力,实现配电系统在复杂环境下的安全可靠运行,是促进能源革命、满足国家重大需求的前沿课题。通过系统深入研究,拓展智能配电网态势感知内涵。深化态势觉察内容,提出智能配电网精度同步相量测量技术,构建智能配电网多源信息集成体系;精益化态势理解内容,提出智能配电网故障区间定位技术,构建智能配电网弹性计算方法,提出基于碳中和能力的智能配电网规划;泛化态势预测内容,提出考虑电动汽车失控不确定性的充放电预测技术,构建智能配电网负荷潜力分析体系,研究智能配电网故障预测技术。构建完整的智能配电网态势感知的基础理论和技术体系,为智能配电网的精益化运维提供理论支持和技术储备。

  • 排序方式:
  • 11
  • /
  • 1.Optimal Configuration of Off-Grid Hybrid Renewable Energy System with PV/Wind/Hydrogen/Cooling

    • 关键词:
    • hydrogen storage; Hybrid renewable energy systems; ice storage; improvedsalp swarm algorithm; improved salp swarm algorithm; off-grid; off-grid;improved salp swarm algorithm; off-grid;PARTICLE SWARM OPTIMIZATION; STORAGE-SYSTEMS; BATTERY SYSTEM; FUEL-CELL;HYDROGEN; FEASIBILITY; RELIABILITY; ISLAND; POWER; COST
    • Ge, Leijiao;Liu, Jiaheng;Wang, Zhongguan;Rafiq, Muhammad Umer
    • 《CSEE JOURNAL OF POWER AND ENERGY SYSTEMS》
    • 2025年
    • 11卷
    • 5期
    • 期刊

    Hydrogen storage and ice storage are promising, environmentally friendly energy storage technologies. However, there are few investigations on the optimal configuration of hybrid renewable energy systems (HRES) for remote off-grid areas with localized scenarios. This paper proposes a new optimal configuration of an off-grid PV/wind/hydrogen/cooling system. Given three performance indices for evaluating HRES, i.e., the levelized cost of energy (LCOE), the loss of power supply possibility (LPSP), and the power curtailment rate (PCR), we use the epsilon-constraint method that formulates LCOE as the objective, while LPSP and PCR serve as constraints. Furthermore, to solve the optimal size of HRES, an improved salp swarm algorithm (ISSA) is proposed. The simulation results show that for an off-grid remote community, the LCOE, LPSP, and PCR of the optimal HRES configuration can achieve $0.31/kWh, 5.00%, and 7.23%, respectively. The comparison of different systems illustrates that adding ice storage in the HRES with hydrogen storage will decrease the LCOE by 27.12%. In addition, compared with other heuristic algorithms, such as SSA, ISSA offers the configuration with the minimum LCOE. The hydrogen-ice storage system is economically significant to off-grid areas with cooling load demand, and the proposed ISSA has excellent accuracy.

    ...
  • 2.Improved Harris Hawks Optimization for Configuration of PV Intelligent Edge Terminals

    • 关键词:
    • Optimization; Power generation; Costs; Planning; Mathematical models;Phasor measurement units; Maintenance engineering; Photovoltaics;photovoltaics intelligent edge terminals; harris hawk optimization;optimal configuration model;SALP SWARM ALGORITHM; DESIGN
    • Ge, Leijiao;Liu, Jiaheng;Yan, Jun;Rafiq, Muhammad Umer
    • 《IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING》
    • 2022年
    • 7卷
    • 3期
    • 期刊

    Photovoltaics intelligent edge terminals (PV IETs) are new devices for data acquisition and management of PV power station. However, due to the massive, scattered, and disordered nature of PV stations and the expensive price of PV IET, installing a PV IET at each PV station has prohibited for large-scale adoption. Therefore, to reduce the life cycle cost of PV IET in a region, this paper proposes an optimal configuration method for PV IET. We propose a mathematical model for the optimal configuration of PV IETs. For a given regional grid, the model aims to obtain the optimal number and location of PV IETs and the connection mode between PV IETs and PV power stations. In addition, an improved Harris hawk optimization (IHHO) is proposed to solve the nonlinear mathematical model. A case study is carried out under different problem sizes, boundary and devices parameters. The simulation results show that under different case, the PV IET configuration method in this paper can obtain lower life cycle cost than the conventional method, and IHHO has higher accuracy than other algorithms. The optimal configuration method in this article can effectively solve the problem of the optimal configuration of PV IET.

    ...
  • 3.Short-term load forecasting of the integrated energy system considering the peak-valley of load correlations

    • 关键词:
    • Landforms;Electric power plant loads;'current;Change-over time;Correlation threshold;Gray wolves;Integrated energy systems;Optimizers;Peak- valley;Prediction research;Short term load forecasting;System prediction
    • Ge, Leijiao;Liu, Jiaheng;Zhu, Xinshan;Shi, Changli
    • 《IET Generation, Transmission and Distribution》
    • 2022年
    • 16卷
    • 14期
    • 期刊

    At different times, the load correlation of the integrated energy system (IES) is different and its changes over time are regular. However, the regularity of such changes is rarely considered in the current IES prediction research. In view of the above reasons, an IES short-term load forecasting method based on load-correlation peaks and valleys is proposed. Inspired by the concept of load peaks and valleys, the concept of load-related peaks and valleys is put forward. Furthermore, based on the above concept, a method of establishing different prediction models within a day based on the correlation threshold is proposed. In order to implement the initial correlation threshold reasonably, a marine predator algorithm with an integrated gray wolf optimizer (MPAIGWO) is proposed. After the initial parameters are selected, use the self-learning ideas in situational awareness to change the parameters. In the case study, the power, thermal, and cold loads of IES were predicted. The comparison results show that the prediction results of this method have high accuracy. In addition, this method can also overcome the influence of irrelevant input variables on prediction. The algorithm comparison proves that the MPAIGWO has the highest optimization performance under the same conditions.
    © 2021 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

    ...
  • 4.基于图信号交替优化的居民用户非侵入式负荷监测方法

    • 关键词:
    • 非侵入式负荷监测;图信号处理;功率损耗;交替优化
    • 冯人海;袁万琦;葛磊蛟
    • 《中国电机工程学报》
    • 2022年
    • 04期
    • 期刊

    非侵入式负荷监测(non-intrusive load monitoring,NILM)是研究居民用户负荷信息的常用方法,但存在分解准确度低、算法泛化性能低等系列问题。为此,该文应用图信号处理(graph signal processing,GSP)理论,提出一种基于图信号交替优化的居民用户NILM方法。该方法根据总负荷数据构建图信号模型,并基于图信号模型得到关于功率损耗的约束条件,较好地解决了传统方法缺乏负荷数据相关性研究的问题。相比于传统方法需要对模型参数多次调整,交替优化法可以自动调整参数,提高了实时监测能力,降低了电网运营成本。仿真结果表明,在1min采样率下,基于图信号交替优化法的总负荷分解准确度比NILM-GSP提高了15%,计算时间降低了10%,充分体现了该文算法性能的优越性。

    ...
  • 5.基于孪生网络和长短时记忆网络结合的配电网短期负荷预测

    • 关键词:
    • 配电网;孪生网络;灰狼优化算法;长短时记忆网络;负荷预测
    • 葛磊蛟;赵康;孙永辉;王尧;牛峰
    • 《电力系统自动化》
    • 2021年
    • 23期
    • 期刊

    保证数据驱动型配电网短期负荷预测精准的关键是选取合适的相似日数据集和构建合理的日负荷预测模型。文中研究了一种基于孪生网络(SN)和长短时记忆(LSTM)网络相结合的配电网短期负荷预测模型。基于配电网负荷相似日的影响因素具有多样化、强随机性的特点,利用SN两个输入权重共享的特点对历史负荷数据进行分析,进而对待测日的特征进行分类,以完成相似日数据选取。此外,利用灰狼优化算法全局搜索能力强、收敛速度快等特点,对基于LSTM网络的配电网短期负荷预测模型进行参数优化。最后,以某一个区域配电网的实际数据为例,验证上述预测方法的准确性与鲁棒性,与LSTM网络、基于粒子群优化的LSTM网络、支持向量机等方法对比可知,所提方法具有较高的准确度和计算效率。

    ...
  • 6.Optimal Integrated Energy System Planning With DG Uncertainty Affine Model and Carbon Emissions Charges

    • 关键词:
    • Planning; Manganese; Costs; Carbon dioxide; Resistance heating;Germanium; Uncertainty; IES; affine model; carbon emission; uncertaintymodel of DG;DEMAND RESPONSE; OPTIMIZATION; POWER; ELECTRICITY; WIND; GAS;ALLOCATION; STORAGE; HEAT
    • Ge, Leijiao;Liu, Hangxu;Yan, Jun;Zhu, Xinshan;Zhang, Shuai;Li, Yuanzheng
    • 《IEEE TRANSACTIONS ON SUSTAINABLE ENERGY》
    • 2022年
    • 13卷
    • 2期
    • 期刊

    Integrated energy systems (IES) with cooling, heat, electricity, and natural gas have drawn significant interest recently as we embrace more sustainable energy a midst climate change. However, the uncertain outputs of distributed generators (DGs) make it challenging for IES planning while maintaining low-cost installation and operation under carbon emission constraints. To tackle the challenge, this work proposes an optimal planning model for IES considering both DG output uncertainties and carbon emission punishments. To reduce the conservatism of the widely-adopted interval and affine algorithms, an affine model based on the matrix form is first proposed to model the uncertain DG outputs. A tiered dynamic charging cost model is further developed to introduce and minimize carbon emissions with a punishment mechanism at the planning stage. Based on these two sub-models, an optimal IES planning model is proposed to simultaneously minimize the overall costs of investment, operation, and carbon emissions. To solve the multi-dimensional nonlinear model, an improved quantum particle swarm optimization (IQPSO) algorithm is introduced with enhanced global optimization ability. Simulation results on the IEEE 33-bus and 69-bus IES network have demonstrated that the proposed method can effectively reduce the impacts of DG uncertainty and carbon emissions at the planning stage of IES with a better long-term economy.

    ...
  • 7.改进萤火虫算法与 K-means 算法结合的 配电网负荷聚类特性分析

    • 关键词:
    • 配电网负荷;K-MEANS聚类;萤火虫算法;数据驱动方法
    • 王继东;顾志成;葛磊蛟;赵长伟;贾东强
    • 《天津大学学报:自然科学与工程技术版》
    • 2023年
    • 2期
    • 期刊

    负荷聚类特性分析是实现配电网的定制电力、高品质供电、高可靠性供电的重要基础.然而现有的Kmeans聚类分析方法,受限于数据样本集和聚类初始中心的选取等,会出现因初始中心不同造成聚类结果差异大的问题.为此,针对配电网负荷数据特点,

    ...
  • 8.Load Clustering Characteristic Analysis of the Distribution Network Based on the Combined Improved Firefly Algorithm and K-means Algorithm

    • 关键词:
    • Bioluminescence;Cluster analysis;Iterative methods;Optimization;Power quality;Quality control;Characteristics analysis;Clustering analysis;Clusterings;Data-driven methods;Distribution network load;Firefly algorithms;K-mean algorithms;K-means++ clustering;Load data;Network load
    • Wang, Jidong;Gu, Zhicheng;Ge, Leijiao;Zhao, Changwei;Jia, Dongqiang
    • 《Tianjin Daxue Xuebao /Journal of Tianjin University Science and Technology》
    • 2023年
    • 56卷
    • 2期
    • 期刊

    The load clustering analysis of distribution networks is the basis for customized power and high-quality and reliable power supply. However, the existing K-means clustering methods are limited by the data sample set and selection of the initial center of clustering, wherein selecting different initial centers will yield significantly different clustering results. Therefore, according to the characteristics of distribution network load data, a distribution network load clustering analysis method based on the combination of improved firefly and K-means algorithms is proposed. Benefiting from the strong global search ability of the firefly algorithm and considering the intraclass similarity and interclass differences, the initial center of the K-means algorithm is optimized to obtain the minimum value of the clustering effectiveness index of the results. Further, to mitigate the weakness of the firefly algorithm in processing load data by adding excellent first-generation individuals via the density method and using an improved attraction formula and a probability attraction between individuals to optimize the individual movement mode in the iterative process, the early convergence speed is accelerated, and the later convergence is stabilized. The algorithm approaches the extreme value faster with a faster calculation speed. This paper lists several examples to verify the clustering effect of the proposed algorithm and finds the optimal initial center of the K-means algorithm for the power load data of a distribution station area, thus obtaining the minimum Davies-Bouldin index, reducing the intraclass loading clustering differences and increasing the interclass differences. The final clustering center exhibits highly representative characteristics, thus providing a basis for load type division and clustering characteristic analysis and laying the foundation for differentiated power service customization on the demand side. © 2023 Tianjin University. All rights reserved.

    ...
  • 9.面向高精度状态感知的配电系统微型同步相量测量单元优化配置

    • 关键词:
    • 微型同步相量测量单元 优化配置 状态估计 配电系统 基金资助:国家自然科学基金项目(51807134); 河北省科技计划项目(16211827)~~; DOI:10.13335/j.1000-3673.pst.2019.0474 专辑:工程科技Ⅱ辑 专题:电力工业 分类号:TM732 手机阅读
    • 田家辉;梁栋;葛磊蛟;李奎;王守相;李占凯
    • 期刊

    可再生能源、电动汽车等大量无序接入使得配电系统运行在越来越复杂和不确定的工况中,迫切需要高精度实时状态感知以实现弹性提升,然而现有的配电量测系统远不能满足新一代配电系统对网络状态进行实时感知的要求。为此,提出了一种面向高精度状态感知的配电系统微型同步相量测量单元(micro-phasor measurement units,μPMU)优化配置方法。首先,在高级量测体系(advancedmeasurement infrastructure,AMI)满足网络可观测的基础上,以状态估计均方误差最小为目标,以任意一致的系统运行状态作为参数代入状态估计误差协方差矩阵,建立了μPMU优化配置模型;其次,通过对增益矩阵进行Cholesky分解,将目标函数采用决策变量显式表达出来,从而可采用成熟的商业求解器快速获得高质量的可行解;最后,采用IEEE33节点和69节点配电系统进行测试,验证了所提方法的有效性。

    ...
  • 10.规模化电动汽车充电特性对小区级配电网可靠性的影响分析

    • 关键词:
    • 电动汽车 配电网可靠性 充电模式 基金资助:国家自然科学基金资助项目(51807134); 国网天津市电力公司科技项目(KJ18-1-31); DOI:10.16186/j.cnki.1673-9787.2019.5.15 专辑:工程科技Ⅰ辑 工程科技Ⅱ辑 专题:电力工业 分类号:TM732 手机阅读
    • 李磊;李晓辉;刘伟东;赵新;谢秦;葛磊蛟
    • 期刊

    电动汽车规模化接入配电网已经成为一种趋势,电动汽车的车载充电技术也获得广泛应用。本文分析了含车载充电的电动汽车在高渗透率接入条件下,对小区级配电网可靠性的影响。首先,根据电动汽车车载充电机主要技术参数和小区级配电网的构成,在PSCAD环境下构建车载充电机及小区级配电网的模型;其次,按照电动汽车的充电时间分布,分析电动汽车无序充电和有序充电2种充电模式下小区级配电网负荷的变化情况,得出有序充电能较好地达到小区配电网负荷削峰填谷的目的;最后,采用IEEE RBTS-BUS6测试系统分别对电动汽车负荷的接入点、充电模式、渗透率进行可靠性指标量化评估。结果表明,线路过载是电动汽车规模化接入系统的主要限制因素,增加接入点的容量和采用有序充电模式可有效提高小区级配电网的可靠性。

    ...
  • 排序方式:
  • 11
  • /