智能配电网态势感知时滞不确定性的区间仿射方法研究

项目来源

国家自然科学基金(NSFC)

项目主持人

葛磊蛟

项目受资助机构

天津大学

立项年度

2018

立项时间

未公开

项目编号

51807134

研究期限

未知 / 未知

项目级别

国家级

受资助金额

25.00万元

学科

工程与材料科学-电气科学与工程-电力系统与综合能源

学科代码

E-E07-E0704

基金类别

青年科学基金项目

关键词

配电系统 ; 时滞电力系统 ; 配电网调度 ; 态势感知 ; 区间仿射方法 ; 配电系统 ; 时滞电力系统 ; 配电网调度 ; 态势感知 ; 区间仿射方法

参与者

侯恺;王绍敏;刘立扬;董逸超;王瀚;赵晨睿;刘浩武

参与机构

天津大学

项目标书摘要:智能配电网态势感知(Situation Awareness of Smart Distribution Network,SASDN)是配电网稳定运行和精准调度的基础。然而,SASDN面临着通信延时、科学计算耗时、不同子站系统响应时长不一等所引起的一系列时滞不确定性问题,常导致智能配电网精准调度失效,限制了其应用范围。针对该问题,本项目拟采用区间仿射方法研究SASDN时滞不确定性。首先,构建SASDN时滞区间仿射模型,深入探索SASDN时滞的作用机理;其次,基于Lyapunov直接法,探索SASDN时滞区间仿射模型的可行解判定方法,并分析其参数鲁棒性,从而获知时滞参数的安全区间;最后,探索SASDN时滞区间仿射模型参数灵敏度分析方法,揭示SASDN非时滞参数对时滞参数的影响规律,提升所提模型的适应性。项目成果将为智能配电网的精准调度和广域协调控制提供理论依据。

Application Abstract: The situation awareness of smart distribution network(SASDN)is the basis of stable operation and precise scheduling of power distribution networks.However,the SASDN has a series of time-delay uncertainty problems,due to communication delay,long computation time and different response time of different substation system.With these problems,SASDN often lead to precise scheduling failure of smart distribution network,limiting its application.In response to these problems,the interval affine method will be used to study the time-delay uncertainty of SASDN in this project.Firstly,the time-delay interval s model of SASDN is constructed to explore the impact of time-delay on SASDN.Secondly,the solution determination method is developed for the time-delay interval affine model of SASDN based on Lyapunov direct method.By using the proposed method,the robustness of the relevant parameters and the interval solution of the time-delay parameter are obtained for the time-delay interval affine model of SASDN.Finally,the sensitivity analysis is conducted to investigate the effects of non-time delay parameters on the time delay interval affine model of SASDN,and the adaptability of the model is improved.The bribe of this project will assist in building up theoretical foundations for the precise scheduling and wide area coordinated control of smart distribution networks.

项目受资助省

天津市

项目结题报告(全文)

由于配电网直接面向用户终端,其完备性将直接影响着终端用户的供电可靠性和用电质量,重要性不言而喻。随着大量可再生能源在配电网中的接入,传统配电网成为有源配电网。为了应对有源配电网所面临的挑战和满足用户日益增长的供电质量和可靠性要求,发展智能配电网已成为共识。在智能配电网条件下,系统采集和处理的数据呈海量增长,并且受用户随机需求响应、客户多样化需求、应急减灾等因素影响,配电网运行趋于复杂多样,对配电管理的要求日趋提高。现有的配电运行态势感知体系在计算速度、安全性评估、可视化、通信网络等诸多环节上均难以满足智能配电网的发展。其主要难点包括:针对配电系统量测装置覆盖率的不足,如何提升智能配电网的量测数据规模;针对多种能源形式接入的智能配电网,如何快速觉察智能配电网状态;如何提升智能配电网态势觉察数据处理性能。开展智能配电网态势感知理论、模型和方法研究,提高智能配电网对综合能源的接纳能力,实现配电系统在复杂环境下的安全可靠运行,是促进能源革命、满足国家重大需求的前沿课题。通过系统深入研究,拓展智能配电网态势感知内涵。深化态势觉察内容,提出智能配电网精度同步相量测量技术,构建智能配电网多源信息集成体系;精益化态势理解内容,提出智能配电网故障区间定位技术,构建智能配电网弹性计算方法,提出基于碳中和能力的智能配电网规划;泛化态势预测内容,提出考虑电动汽车失控不确定性的充放电预测技术,构建智能配电网负荷潜力分析体系,研究智能配电网故障预测技术。构建完整的智能配电网态势感知的基础理论和技术体系,为智能配电网的精益化运维提供理论支持和技术储备。

  • 排序方式:
  • 1
  • /
  • 1.Self-Adaptive Evaluation of Hybrid AC/DC Distribution Networks with Multi-Energy Complementary Systems

    • 关键词:
    • Analytic hierarchy process;Complementary systems;DC distribution network;Energy;Hybrid AC/DC distribution network;Interval analytic hierarchy process;Multi energy;Multi-energy complementary;Multienergy;Optimisations;Self-adaptive evaluation
    • Ge, Leijiao;Li, Yuanliang;Yan, Jun;Wang, Yao;Niu, Feng
    • 《2021 IEEE Power and Energy Society General Meeting, PESGM 2021》
    • 2021年
    • July 26, 2021 - July 29, 2021
    • Washington, DC, United states
    • 会议

    The hybrid AC/DC distribution networks with multienergy complementary systems (HDN-MECS) have become a powerful supporting platform for the vertical integration of single energy and the horizontal integration of multiple energy. However, the complex composition, diverse operating scenarios, and strong spatiotemporal coupling have all posed major challenges for the comprehensive evaluation of HDN-MECS operating effectiveness. To this end, a self-adaptive evaluation framework is proposed in this paper based on the unique characteristics of HDN-MECS. Taking maximum entropy criterion (MEC) as an objective function, this paper proposes a two-stage interval analytic hierarchy process (IAHP), and solves the problem with a hybrid algorithm of improved particle swarm optimization (IPSO) and chaos optimization (CO). A self-adaptive interval analytic hierarchy process (SAIAHP) is developed to weight performance indicators under the framework, which aims to enable dynamic, robust evaluation considering human expert inputs. A case study forecasting verifies the accuracy and applicability of the SAIAHP method. © 2021 IEEE.

    ...
  • 2.A FA-GWO-GRNN method for short-term photovoltaic output prediction

    • 关键词:
    • Factor analysis;Multivariant analysis;Regression analysis;Electric power transmission networks;Neural networks;Economic operations;Fast convergence;Generalized Regression Neural Network(GRNN);Generalized regression neural networks;Global searching;High-precision;Meteorological input;Real-world scenario
    • Ge, Leijiao;Li, Yuanliang;Xian, Yiming;Wang, Yao;Liang, Dong;Yan, Jun
    • 《2020 IEEE Power and Energy Society General Meeting, PESGM 2020》
    • 2020年
    • August 2, 2020 - August 6, 2020
    • Montreal, QC, Canada
    • 会议

    High-precision prediction of photovoltaic (PV) output is essential in PV system access to the power grid. To realize the security, stability and economic operation of power system, this paper proposes a hybrid factor analysis, gray wolf optimization, and generalized regression neural network (FA-GWO-GRNN) framework for short-term PV output forecast. In order to reduce the dimension of input features to PV output forecasting, the paper first develops a factor analysis (FA) to extract effective information from meteorological inputs. A generalized regression neural network (GRNN) algorithm is then employed to make the forecast, whose parameters are optimized by the gray wolf optimization (GWO) for its global searching capacity and fast convergence. The proposed GWO-GRNN framework effectively achieves high precision in short-term PV output forecasting, demonstrated in a case study on the measured power of a real world PV plant, which validated the accuracy and applicability of the proposed method in real-world scenarios.
    © 2020 IEEE.

    ...
  • 3.Optimal configuration of energy storage system considering uncertainty of load and wind generation

    • 关键词:
    • Simulated annealing;Investments;Wind power;Data storage equipment;Neural networks;Particle swarm optimization (PSO);Back propagation neural networks;Configuration model;Distribution systems;Energy storage systems;Operational constraints;Optimization problems;Predictive modeling;Technical constraints
    • Zhang, Shuai;Bai, Xingzhen;Ge, Leijiao;Yan, Jun
    • 《2020 IEEE Power and Energy Society General Meeting, PESGM 2020》
    • 2020年
    • August 2, 2020 - August 6, 2020
    • Montreal, QC, Canada
    • 会议

    Energy storage systems are promising solutions to the mitigation of power fluctuations and the management of load demands in distribution networks. However, the uncertainty of load demands and wind generations increasingly seen in distribution networks may have a great impact on the configuration of ESS. To solve the problem, a novel optimal configuration method for energy storage system is proposed to reduce the influence of uncertainty of both load demands and WGs. The proposed method first reduce the uncertainty of load through a comprehensive demand response system based on time-of-use and incentive. Then, to predict the output of wind generations, we use the particle swarm optimization and backpropagation neural network to create a predictive model of the wind power. Then, an optimal configuration model is established to minimize the ESS investment cost and the network power loss reduction, subject to technical constraints such as ESS operational constraints and power balance constraint et al. An improved simulated annealing PSO algorithm is used to solve the optimization problem. Finally, the numerical studies on a modified IEEE 33-node distribution system show the advantages of the proposed methodology.
    © 2020 IEEE.

    ...
  • 4.A FA-GWO-GRNN method for short-term photovoltaic output prediction

    • 关键词:
    • Factor analysis ; Multivariant analysis ; Regression analysis ; Electric power transmission networks ; Neural networks;Economic operations ; Fast convergence ; Generalized Regression Neural Network(GRNN) ; Generalized regression neural networks ; Global searching ; High;precision ; Meteorological input ; Real;world scenario
    • GeLeijiao;LiYuanliang;XianYiming;WangYao;LiangDong;YanJun
    • 《2020 IEEE Power and Energy Society General Meeting, PESGM 2020》
    • 2020年
    • August 2, 2020-August 6, 2020
    • Montreal, QC, Canada
    • 会议

    High-precision prediction of photovoltaic (PV) output is essential in PV system access to the power grid. To realize the security, stability and economic operation of power system, this paper proposes a hybrid factor analysis, gray wolf optimization, and generalized regression neural network (FA-GWO-GRNN) framework for short-term PV output forecast. In order to reduce the dimension of input features to PV output forecasting, the paper first develops a factor analysis (FA) to extract effective information from meteorological inputs. A generalized regression neural network (GRNN) algorithm is then employed to make the forecast, whose parameters are optimized by the gray wolf optimization (GWO) for its global searching capacity and fast convergence. The proposed GWO-GRNN framework effectively achieves high precision in short-term PV output forecasting, demonstrated in a case study on the measured power of a real world PV plant, which validated the accuracy and applicability of the proposed method in real-world scenarios. © 2020 IEEE.

    ...
  • 排序方式:
  • 1
  • /