基于多功能高地隙底盘的精量施药机械研究开发
项目来源
项目主持人
项目受资助机构
项目编号
立项年度
立项时间
研究期限
项目级别
受资助金额
学科
学科代码
基金类别
关键词
参与者
参与机构
项目受资助省
1.Design and verification of automatic navigation control system for large high clearance self-propelled sprayer
- 关键词:
- High clearance self-propelled sprayer; automatic navigation;mathematical model; control strategy; control method; MATLAB/Simulink;field test;GUIDANCE; VEHICLES
- Li, Wei;Shao, Mingxi;Du, Yuefeng;Li, Zhixiang;Sun, Zhijuan;Yang, Fan
- 《PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OFAUTOMOBILE ENGINEERING》
- 2024年
- 卷
- 期
- 期刊
An automatic navigation system aiming at improving the accuracy and efficiency of a large high clearance self-propelled sprayer was developed. First, a navigation hydraulic steering system was designed according to the structural characteristics and operation requirements of the sprayer, and a mathematical model of the system was established to describe the working characteristics of the navigation system. The system includes a navigation control strategy, a pure pursuit path tracking algorithm, and a fuzzy adaptive proportional-integral-derivative control method. To verify the performance of the system, a simulation model was developed using MATLAB/Simulink, and the performance of the control methods were compared. Additionally, an actual vehicle test platform was built based on 3WPG-3000 high clearance self-propelled sprayer independently developed by the research group. The simulation results revealed that under the two-wheel steering mode, the lateral position deviation of the vehicle decreases to 0 m in 11 s, and the heading angle deviation decreases to 0 rad in about 11 s; while under four-wheel steering mode, the lateral position deviation of the vehicle decreases to 0 m in 8 s, and the heading angle deviation decreases to 0 rad in 8 s. The field test results revealed that at the speed of 3 km/h, the sprayer tracked the target path in 5.84 s under the two-wheel steering mode and reached stability, and tracked the target path in 4.08 s under the four-wheel steering mode and reached stability; while at the speed of 5 km/h, the spray tracked the target path in 3.75 s under the four-wheel steering mode and reached stability. Altogether, the results of the simulation and field test verify the stability, accuracy, and practicability of the system.
...
