节能、环保、安全、耐用的高性能轮胎的研制及产业化
项目来源
广(略)技(略)
项目主持人
罗(略)
项目受资助机构
华(略)大(略)
项目编号
2(略)A(略)1(略)1(略)
立项年度
2(略)
立项时间
未(略)
研究期限
未(略) (略)
项目级别
省(略)
受资助金额
5(略).(略)元
学科
新(略)
学科代码
未(略)
基金类别
广(略)略(略)产(略)技(略)专(略)项(略)
关键词
橡(略) (略)料(略)纳(略)材(略) (略)轮(略) (略)b(略);(略)n(略)a(略)i(略) (略)a(略)o(略)s(略)s(略)H(略)-(略)f(略)a(略) (略)e
参与者
刘(略)勇(略)
参与机构
广(略)南(略)胎(略)司
项目标书摘要:发展(略)、高寿命的高性能轮(略)业的自主创新和产业(略)基纳米复合材料因在(略)景,正成为研究热点(略)的要求,主要针对橡(略)技术、界面结构、网(略)中的关键科学问题,(略)材料在橡胶基纳米复(略)应法制备橡胶基纳米(略)性剂的制备及其对纳(略)影响、橡胶基纳米复(略)方法、橡胶基纳米复(略)性能的关系等基础研(略)米管、石墨烯、纳米(略)、白炭黑等新型纳米(略)术,以及采用原位反(略)胶基纳米复合材料。(略),加强纳米材料与橡(略)有效提高纳米材料在(略),同时还明显降低复(略)动态性能。多功能改(略)现,它们不仅可与橡(略)米填料形成氢键、共(略)胶硫化,改善填料分(略)料更好的抗湿滑性和(略)磨和压缩疲劳性能。(略)填料表面形成氢键或(略)改性剂,通过自组装(略)联网络实现网络互穿(略)增强和改性效果。这(略)不同于传统的炭黑增(略)增强的概念,能产生(略)研究成果应用到轮胎(略)仅可以提高橡胶复合(略)现在动态性能上60(略)降27.2%;同时(略)升高19.3%,即(略)和提高抗湿滑性能,(略)磨性能和更低的压缩(略)上,本项目的研究成(略)限公司进行了中试研(略)其耐久性和高速性能(略)家标准;轮胎滚动阻(略)数降至7.51,滚(略)本项目的研究为橡胶(略)轮胎和其他高性能橡(略)好的理论指导和产业(略)
Applicati(略): Rubber (略)have been(略)extensive(略)due to th(略)al applic(略)e tire in(略)ng to mee(略)rement of(略)rmance ti(略)k focused(略)paration (略)interface(略)network s(略)d dynamic(略)e of rubb(略)es.We dee(略) the appl(略)the new n(略)terials i(略)r composi(略) reaction(略)ing rubbe(略)s,the pre(略) novel mu(略)nal modif(略) influenc(略)ructure a(略)nce of co(略)e novel“i(略)ting netw(略)ment appr(略)s rubber (略)and the r(略) between (略)re and dy(略)rmance of(略)posites,e(略)e,we focu(略)preparati(略)anomateri(略)face modi(略)chnology (略)te nanotu(略)e,microcr(略)ellulose,(略)ca,etc,an(略)ration of(略)rmance ti(略)anocompos(略)in situ r(略) study fo(略)e surface(略)on is in (略)nhancing (略)cial adhe(略)n the nan(略) and rubb(略)esult of (略)nly effec(略)ove the d(略)tate of n(略)ls in the(略)o signifi(略)ce the he(略)on and im(略)ynamic pe(略)he resear(略)e synthes(略)ication o(略)ction mod(略)ated that(略)function (略)n take gr(略)n with ru(略),and effi(略)m hydroge(略)lent bond(略)ation bon(略)romoting (略)zation of(略) improvin(略)rsion of (略)bly,such (略)ier can e(略)lcanized (略)osites wi(略)et resist(略)rolling r(略)nd wear r(略)nd compre(略)ue perfor(略)ionally,t(略)ation of (略)nal react(略)r can fac(略)construct(略)work by s(略)y method,(略)he interp(略)network i(略)r network(略)producing(略)hancement(略)ed effect(略)bber comp(略)to the ab(略)tion,the (略)search fi(略) applied (略) tread ru(略)ss factor(略)ecreased (略)ereas the(略)r at 0 °C(略)by 19.3%.(略)d tires n(略)isfy the (略) requirem(略)dian tire(略)olling re(略)gnificant(略)d by 25%,(略)f which l(略)51.Notewo(略)rolling r(略)abel leve(略)class B.
项目受资助省
广(略)
1.节能、环保、安全、耐用的高性能轮胎的研制及产业化结题报告(Preparation and Industrialization of Energy Saving,Environmentally-friendly,Safe and Durable Tire)
- 关键词:
- 橡胶、纳米材料、纳米复合材料、高性能轮胎、Rubber、Nano-materials、Nanocomposites、High-performance tyre
- 罗远芳;刘岚;陈勇军;
- 《华南理工大学材料科学与工程学院;》
- 2017年
- 报告
发展低滚阻、抗湿滑、高耐磨、高寿命的高性能轮胎,对广东和全国橡胶产业的自主创新和产业结构调整至关重要。橡胶基纳米复合材料因在轮胎工业中的潜在应用前景,正成为研究热点。本项目结合高性能轮胎的要求,主要针对橡胶基纳米复合材料的制备技术、界面结构、网络结构、动态性能等研究中的关键科学问题,系统深入地开展新型纳米材料在橡胶基纳米复合材料中的应用、原位反应法制备橡胶基纳米复合材料、新型多功能改性剂的制备及其对纳米复合材料结构和性能的影响、橡胶基纳米复合材料的网络互穿增强新方法、橡胶基纳米复合材料的结构形态与动态性能的关系等基础研究,重点研究了埃洛石纳米管、石墨烯、纳米微晶纤维素、纳米木质素、白炭黑等新型纳米材料的制备及表面改性技术,以及采用原位反应法制备高性能轮胎用橡胶基纳米复合材料。研究发现,通过表面改性,加强纳米材料与橡胶基体的界面结合,不仅有效提高纳米材料在基体中的分散,实现补强,同时还明显降低复合材料的生热性能,提高动态性能。多功能改性剂的合成及应用研究发现,它们不仅可与橡胶分子链接枝,还能与纳米填料形成氢键、共价键或配位键,能促进橡胶硫化,改善填料分散,同时能够赋予复合材料更好的抗湿滑性和较低的滚动阻力,改进耐磨和压缩疲劳性能。此外,加入某些能与纳米填料表面形成氢键或化学键的多官能度反应性改性剂,通过自组装构筑填料网络,与橡胶交联网络实现网络互穿,对复合材料产生特殊的增强和改性效果。这种网络互穿增强的新方法不同于传统的炭黑增强和通常的无机纳米粒子增强的概念,能产生更好的增强效果。将以上研究成果应用到轮胎胎面胶中,研究发现,不仅可以提高橡胶复合材料的力学性能,还能实现在动态性能上60 °C时的tan δ下降27.2%;同时0 °C时的tan δ升高19.3%,即实现了同时降低滚动阻力和提高抗湿滑性能,且复合材料具有更好的耐磨性能和更低的压缩疲劳生热性能。在此基础上,本项目的研究成果在广州华南橡胶轮胎有限公司进行了中试研究。试制的高性能轮胎,其耐久性和高速性能等综合性能也达到有关国家标准;轮胎滚动阻力下降了25%,滚动系数降至7.51,滚动阻力标签等级为B级。本项目的研究为橡胶基纳米复合材料在高性能轮胎和其他高性能橡胶制品中的应用提供了很好的理论指导和产业化基础。 Rubber composites have been attracted extensive attention due to their potential application in the tire industry.Aiming to meet the requirement of high performance tire,this work focused on the preparation technology,interface structure,network structure and dynamic performance of rubber composites.We deeply studied the application of the new nanometer materials in the rubber composites,in situ reaction for preparing rubber composites,the preparation of novel multi-functional modifier and its influence on the structure and performance of composites,the novel“interpenetrating network”enhancement approach towards rubber composites,and the relationship between the structure and dynamic performance of rubber composites,etc.Therefore,we focused on the preparation of new nanomaterials and surface modification technology of halloysite nanotubes,graphene,microcrystalline cellulose,lignin,silica,etc,and the preparation of high performance tire rubber nanocomposites using in situ reaction.The study found that the surface modification is in favour of enhancing the interfacial adhesion between the nano-materials and rubber matrix,result of which not only effectively improve the dispersion state of nano-materials in the matrix,also significantly reduce the heat production and improve the dynamic performance.The research about the synthesis and application of multi-function modifier indicated that the multi-function modifier can take graft reaction with rubber chains,and efficiently form hydrogen bond,covalent bond or coordination bond,further promoting the vulcanization of rubber and improving the dispersion of filler.Notably,such novel modifier can endow the vulcanized rubber composites with better wet resistance,lower rolling resistance,and wear resistance and compression fatigue performance.Additionally,the incorporation of polyfunctional reactive modifier can facilitate to construct filler network by self-assembly method,realizing the interpenetrating network in the rubber network,and hence producing special enhancement and modified effect towards rubber composites.Due to the above combination,the obtained research findings were applied to the tire tread rubber.The loss factor at 60 °C decreased by 27.2%,whereas the loss factor at 0 °C increased by 19.3%.The prepared tires not only satisfy the performance requirement of meridian tire,also the rolling resistance significantly decreased by 25%,the value of which lowers to 7.51.Noteworthily,the rolling resistance label level is to be class B.
...