基于平行CPSS结构的智慧能源调度机器人及其知识自动化理论

项目来源

国家自然科学基金(NSFC)

项目主持人

余涛

项目受资助机构

华南理工大学

项目编号

51777078

立项年度

2017

立项时间

未公开

项目级别

国家级

研究期限

未知 / 未知

受资助金额

55.00万元

学科

工程与材料科学-电气科学与工程-电力系统与综合能源

学科代码

E-E07-E0704

基金类别

面上项目

关键词

信息—物理—社会融合系统 ; 智能控制 ; 知识自动化 ; 智慧能源 ; 机器人 ; Intelligent Control ; Smart Energy ; Cyber-physical-social systems ; Knowledge Automation ; Robot

参与者

王克英;李力;程乐峰;瞿凯平;殷林飞;潘振宁;王德志;郑宝敏

参与机构

悉尼科技大学

项目标书摘要:本项目着眼于能源5.0 前瞻性基础理论研究,重点攻关基于信息—物理—社会融合系统(CPSS)的智慧能源调度机器人RoboEC群体及其知识自动化的关键理论方法:研究面向下一代能源电力系统的平行CPSS理想框架及工程可行框架体系;研发基于数据驱动及自校正引导方法的新型高精度镜像仿真方法,实现镜像系统对真实物理系统的趋优引导;研究面向未来能源电力系统集中/分散调度的平行机器学习方法和知识自动化技术,实现RoboEC群体的知识自我探索和群体智慧水平的自动提升;研究平行系统与真实系统的交互协调收敛数学机理及实现CPSS大闭环的系统化设计方法,获得能源、信息、社会三者的深度融合方法和系统化工程设计方法;研发并完善基于平行CPSS架构的RoboEC研究平台,将所研发的RoboEC投入到小规模实际工程运行测试,力争在“能源4.0”到“能源5.0”的技术发展之路上先行一步。

Application Abstract: This project attempts on systematically developing the key theories of“Energy 5.0”based on smart energy robot dispatcher RoboEC,in which the theoretical and application structure of next generation of energy system called CPSS will be thoroughly investigated.In addition,novel high-precision mirror simulation approaches will be developed based on data-driven and self-correction mechanisms,such that an optimal approximation from the mirror system to the physical system can be achieved.Moreover,parallel machine learning and knowledge automation will be comprehensively studied for centralized/decentralized dispatch of future energy power systems,which can effectively achieve a knowledge self-exploration of RoboECs as well as significantly enhance the swarm intelligence.Besides,the convergence property between the coordinated parallel system and real system will be studied in depth,together with the design of global closed-loop CPSS system,so that a highly incorporated and systematic engineering design of energy,information and society can be realized.Lastly,a small-scale experiment project will be used for testing the engineering feasibility of theoretical results with the ambitious aims to make the substantial scientific progress from“Energy 4.0”to“Energy 5.0”.

项目受资助省

广东省

项目结题报告(全文)

在能源变革新形势下,电网调度运行面临的挑战愈发严峻。海量新能源和柔性负荷渗透率不断增加,电网运行方式的不确定性日益增加;“源—网—荷—储”协同运行导致各层级电网调度对象和数量呈指数级增加,调度人员实时决策压力剧增;电力市场下多方主体利益博弈显著加剧电网运行的不确定性,电力系统最优调度决策的复杂度急剧增加。在此背景下,调度自动化对智能调度的需求愈加迫切,本项目立项时拟研究基于智慧能源调度机器人RoboEC的能源5.0关键基础理论和方法,并尝试小规模工程验证。围绕原项目立项设定的研究内容,研究了面向下一代能源电力系统的平行CPSS系统理想框架及工程可行框架体系。研究了平行人工系统建模方法以及多主体电力市场演化博弈的收敛性,研发电力市场和碳市场出清模型和仿真程序,并搭建平行CPSS系统实验室研究平台。研究集中调度模式下单一智慧能源调度机器人RoboEC的知识自动化流程与并行机器学习方法。研究分散调度模式下智慧能源调度机器人群体RoboECs的知识自动化流程、人工社会建模与并行机器学习方法。研究平行系统与真实系统的交互协调机理,研究RoboECs在CPSS系统大闭环中实现自我博弈和平行学习的理论方法,提出统一时间尺度的深度强化学习智能调度脑,在典型综合能源系统和微电网系统算例进行验证,取得令人振奋的结果。该项目成果可推广至电网的数字孪生系统开发和建设。以电网的真实数据,构建用于RoboEC平行学习的数字孪生系统,实现区域电网运行数据的全要素接入,基于“知识+数据”驱动的建模技术对电网物理系统和运行场景进行数字化构建,实现孪生系统与物理系统的实时映射;系统搭载基于大数据驱动的运行场景生成算法,为RoboEC平行学习提供丰富样本;构建复杂调控场景的“过去—现在—平行—未来”多时态决策推演模型,为RoboEC平行学习提供与物理系统高度真实的探索环境。实现源网荷储联合优化运行,提升电网的新能源消纳能力和电网安全稳定性。项目提出的CPSS体系架构已应用于南方电网和国家电网重点科技示范工程项目,在东莞松山湖和河南兰考两个平行系统/数字孪生示范工程项目已应用。该项目获得省部级科技奖励4项,发表/录用论文58篇,其中,SCI一区收录20篇、ESI高被引2篇,F5000中国精品论文1篇;发明专利授权5项,出版专著1部。项目负责人获批广东省珠江学者。成果超过原申请书计划,达到结题要求。

  • 排序方式:
  • 26
  • /
  • 1.考虑大气污染物时空分布的多区域电力系统调度及其多目标分布式优化

    • 关键词:
    • 时空分布控制;多区域电力系统;多目标分布式优化;ADMM
    • 张志义;余涛;李昊飞;王文睿;瞿凯平;袁健华
    • 《电网技术》
    • 2020年
    • 03期
    • 期刊

    随着电力系统的发展,互联电网对各自区域内信息的私密性愈发重视;同时,大气污染日趋严重,对发电提出了更高的要求。为此,提出了考虑发电成本、碳排放和大气污染的多区域电力系统多目标模型。不同于传统的总量控制,采用一种时空分布控制对大气污染物排放进行处理。该方法利用高斯烟团模型描述大气污染物的扩散运动,以此计算机组发电所排放的大气污染物对居民的影响,从而调整发电计划。为在保证区域私密性的前提下,协调多维相互冲突的目标,先用隶属度处理多维目标,然后解耦相关目标和约束,并用交替方向乘子法(alternatingdirectionmethodof multipliers,ADMM)进行分布式求解。最后,通过仿真算例验证模型在降低大气污染物排放对居民影响的优越性以及多目标分布式优化的有效性。

    ...
  • 2.Analytical reliability assessment of cyber-physical distribution system with distributed feeder automation

    • 关键词:
    • Distributed feeder automation; Cyber physical distribution system;Cyber-attacks; Fault management process; Analytical reliabilityassessment
    • Zeng, Guangxuan;Yu, Tao;Wang, Ziyao;Lin, Dan
    • 《ELECTRIC POWER SYSTEMS RESEARCH》
    • 2022年
    • 208卷
    • 期刊

    Cyber-physical distribution system (CPDS) handles power grid faults by feeder automation. The reliability assessment of CPDS has been intensively discussed for centralized feeder automation (CFA) in existing researches. However, the inapplicability of CFA reliability models, and the low computation efficiency issue of the mostly used Monte Carlo method greatly limits their application in practical engineering cases of the large-scale CPDS with the distributed feeder automation (DFA) mode. Thus, this paper proposes a region-based analytical reliability assessment method for DFA, which has high computation efficiency in the large-scale CPDS. Firstly, the reliability impacts of cyber system anomalies in the DFA mode are analysed and the cyber reliability models are built considering both cyber device failures and cyber-attacks. Then, the cyber system status is integrated into malfunction probability modelling of switches for reliability assessment. Finally, the load reliability is assessed based on the fault region division by the proposed analytical method and the reliability indices are calculated. The accuracy, efficiency and scalability of the proposed method are verified in case studies.

    ...
  • 3.考虑大气污染物时空分布控制的多时间尺度协调多目标优化调度策略

    • 关键词:
    • 环境经济调度;多时间尺度协调;空气污染;环境容量裕度;多目标优化
    • 陈艺璇;余涛
    • 《中国电机工程学报》
    • 2019年
    • 08期
    • 期刊

    该文提出了一种考虑大气污染物时空分布控制的多时间尺度协调多目标优化调度策略。首先,构建一种考虑大气边界层影响的污染物时空分布计算模型,可基于气象预报信息估算出火电厂污染物的时空分布情况;然后,采用"日前–日内滚动"的调度框架,提出一种考虑大气污染物时空分布控制的多时间尺度协调多目标优化调度模型,同时减少发电成本、碳排放及火电厂造成的大气污染;此外,充分利用大气环境的自净能力,提出一种考虑大气环境容量裕度的多目标决策方法。改进的IEEE 39节点系统和广东电网的仿真结果表明:该策略不仅可有效减少火电厂造成的大气污染,还可根据气象条件及背景浓度的变化实现多个目标之间的动态权衡,实现了真正意义上的经济、环保电力调度。

    ...
  • 4.基于扰动观测器的永磁同步发电机最大功率跟踪滑模控制

    • 关键词:
    • 永磁同步发电机扰动观测器滑模控制最大功率跟踪基金资助:国家自然科学基金项目(51477055,51667010,51777078);昆明理工大学自然科学研究基金项目–省人才培养计划(KKSY201604044);云南省教育厅科学研究基金项目(2017ZZX146)资助~~;专辑:信息科技 基础科学 工程科技Ⅱ辑专题:电力工业 自动化技术分类号:TM31TP273手机阅读
    • 杨博;束洪春;朱德娜;余涛
    • 期刊

    本文设计了一款基于扰动观测器的滑模控制(perturbation observer based sliding-mode control, POSMC)来实现永磁同步发电机(permanent magnetic synchronous generator, PMSG)的最大功率跟踪(maximum power point tracking, MPPT).首先,将发电机非线性、参数不确定、以及随机风速聚合成一个扰动,并通过扰动观测器对其进行在线估计.随后,采用滑模控制(sliding-mode control, SMC)对该扰动估计进行实时完全补偿,从而实现不同工况下的控制全局一致性以及各类不确定环境下的鲁棒控制.同时, POSMC采用扰动实时估计值进行补偿来代替传统SMC中所使用的扰动上限值进行补偿,因此可有效解决传统SMC过于保守的缺点,使得控制成本更为合理.最后, POSMC无需精确的PMSG模型,仅需测量d轴电流和机械转速,易于实现.本文进行了3个算例研究,即阶跃风速、随机风速和发电机参数不确定.仿真结果表明,与矢量控制(vector control, VC)和SMC相比, POSMC在各类工况下均可捕获最大风能并具有较强的鲁棒性.基于d Space的硬件在环实验(hardware-in-loop, HIL)验证了所提算法的可行性.

    ...
  • 5.基于隐马尔可夫模型的非侵入式负荷监测泛化性能改进

    • 关键词:
    • 非侵入式负荷监测;隐马尔可夫模型;泛化性能;极大似然估计
    • 苏晓;余涛;徐伟枫;蓝超凡;史守圆
    • 《控制理论与应用》
    • 2022年
    • 4期
    • 期刊

    隐马尔可夫模型(HMM)是非侵入式负荷监测常用的算法.由于电压波动与负荷自身电气特性变化等原因,负荷的测量状态如功率可能持续变化,运行过程中出现新的状态转移,但当前基于HMM的非侵入式负荷监测方法并未考虑如何处理该情况,缺乏状态

    ...
  • 6.含高渗透率新能源的新型交直流储能系统的配电网规划

    • 关键词:
    • 新型电力系统;储能系统;交直流配电网;供电可靠性
    • 张旭;李阳;刘晓;韩捷;李俊林;林劝立;张桂凯;彭伟梁
    • 《南方电网技术》
    • 2022年
    • 04期
    • 期刊

    建设以新能源为主体的新型电力系统是推动电力清洁低碳发展的必然选择,实现清洁能源充分消纳、满足用户侧灵活接入需求成为新型电力系统技术研究的重要方向。首先对新型储能在改善城市电网供电可靠性的优势进行了分析,阐述了储能模块交直流配电网应用场景、技术和经济优势;提出了新型交直流储能系统的技术方案,该方案支持多元化发展,提供灵活多样的能源有序接入服务,以储能模块的新型交直流配电网物理构架为基础,实现分布式能源和电动汽车灵活接入,可满足数据中心等交直流用户需求,提供稳定高质量高可靠的供能,实现能源梯级利用,有效提升园区电压质量,保障清洁能源充分消纳需求,减少线路损耗和用电成本;最后通过某地区新型交直流储能系统示范项目实际案例,从经济和社会效益等方面,论证了本方案的优势和可行性。为实现碳达峰、碳中和目标,保障能源供应安全,推动能源互联网产业多元化和规模化发展,建设以新能源为主体的新型电力系统提供了参考和经验。

    ...
  • 7.Generalization performance improvement of non-intrusive load monitoring based on hidden Markov model

    • 关键词:
    • Maximum likelihood estimation;Statistical tests;Electric load management;Viterbi algorithm;Clustering algorithms;Electrical characteristic;Generalisation;Generalization performance;Hidden-Markov models;Maximum-likelihood estimation;Nonintrusive load monitoring;Power;Power decomposition;State transitions;Voltage fluctuations
    • Su, Xiao;Yu, Tao;Xu, Wei-Feng;Lan, Chao-Fan;Shi, Shou-Yuan
    • 《Kongzhi Lilun Yu Yingyong/Control Theory and Applications》
    • 2022年
    • 39卷
    • 4期
    • 期刊

    Hidden Markov model (HMM) is a common algorithm for non-intrusive load monitoring. Due to voltage fluctuation and changing load electrical characteristics, the measured state of load, such as power, may continue to change, and new state transition occurs during operation. However, the current non-intrusive load monitoring method based on HMM does not consider how to deal with this situation and lacks the generalization ability of state identification and power decomposition. To solve this problem, this paper proposes and constructs a binary-parameter hidden Markov model (BPHMM). Combined with DBSCAN clustering algorithm, the load state is clustered based on active power and steadystate current to reduce the possibility of interference caused by voltage fluctuation and noise data. Viterbi algorithm is improved to take into account the updating of HMM parameters to improve the generalization performance of load state prediction. Considering the random fluctuation of power, based on the principle of maximum likelihood estimation, the optimal model of active power calculation is constructed to realized the load power decomposition. In this paper, the public data set AMPds2 is used to verify the proposed method, and the test example shows that the effectiveness of the proposed method is verified.
    © 2022, Editorial Department of Control Theory & Applications. All right reserved.

    ...
  • 8.of translation:基于隐马尔可夫模型的非侵入式负荷监测泛化性能改进

    • Su, Xiao ; Yu, Tao ; Xu, Wei-Feng ; Lan, Chao-Fan ; Shi, Shou-Yuan
    • 《Kongzhi Lilun Yu Yingyong/Control Theory and Applications》
    • 2022年
    • 39卷
    • 4期
    • 期刊

    Hidden Markov model (HMM) is a common algorithm for non-intrusive load monitoring. Due to voltage fluctuation and changing load electrical characteristics, the measured state of load, such as power, may continue to change, and new state transition occurs during operation. However, the current non-intrusive load monitoring method based on HMM does not consider how to deal with this situation and lacks the generalization ability of state identification and power decomposition. To solve this problem, this paper proposes and constructs a binary-parameter hidden Markov model (BPHMM). Combined with DBSCAN clustering algorithm, the load state is clustered based on active power and steadystate current to reduce the possibility of interference caused by voltage fluctuation and noise data. Viterbi algorithm is improved to take into account the updating of HMM parameters to improve the generalization performance of load state prediction. Considering the random fluctuation of power, based on the principle of maximum likelihood estimation, the optimal model of active power calculation is constructed to realized the load power decomposition. In this paper, the public data set AMPds2 is used to verify the proposed method, and the test example shows that the effectiveness of the proposed method is verified. © 2022, Editorial Department of Control Theory & Applications. All right reserved.

    ...
  • 9.Data-driven optimal PEMFC temperature control via curriculum guidance strategy-based large-scale deep reinforcement learning

    • 关键词:
    • Learning algorithms;Robustness (control systems);Curricula;Deep learning;Proton exchange membrane fuel cells (PEMFC);Reinforcement learning;MIMO systems;Advanced controller;Guidance strategy;Imitation learning;Multiple input multiple output system;Operation efficiencies;Optimal controller;Stack temperature;Strong robustness
    • Li, Jiawen;Yang, Shengchun;Yu, Tao;Zhang, Xiaoshun
    • 《IET Renewable Power Generation》
    • 2022年
    • 16卷
    • 7期
    • 期刊

    As the proton exchange membrane fuel cell (PEMFC) is a nonlinear, time-varying, multiple-input multiple-output system, an advanced controller with strong robustness and adaptability is required for controlling PEMFC stack temperature and achieve a high operation efficiency. In this paper, a data driven optimal controller is proposed for controlling the stack temperature, which is based on large-scale deep reinforcement learning. In addition, a new deep reinforcement learning algorithm termed curriculum guidance strategy large-scale dual-delay deep deterministic policy gradient (CGS-L4DPG) algorithm is proposed for this controller. The design of this algorithm introduces the concepts of the curriculum guidance strategy and imitation learning, and its inclusion improves the performance and robustness of the proposed controller. The simulation results show that, taking advantage of the high adaptability and robustness of CGS-L4DPG algorithm, the proposed controller can more effectively control the PEMFC stack temperature than existing control algorithms.
    © 2021 The Authors. IET Renewable Power Generation published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

    ...
  • 10.AGC Power Generation Command Allocation Method Based on Improved Deep Deterministic Policy Gradient Algorithm

    • 关键词:
    • Commerce;Deep learning;Electric power transmission networks;Lakes;Electric power system control;Intelligent agents;AGC;Command allocations;Deterministics;Dynamic allocation of generation power command;Dynamic allocations;Frequency regulation market;Frequency regulations;Policy gradient;Regulation markets;Regulation mileage
    • Li, Jiawen;Yu, Tao;Zhang, Xiaoshun;Zhu, Hanxin
    • 《Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering》
    • 2021年
    • 41卷
    • 21期
    • 期刊

    An optimization model for an AGC generation power command allocation algorithm of the comprehensive energy system was built in the environment of a frequency regulation ancillary services market in this paper. AGC generation power command allocation was dynamically optimized to reduce area control deviation and regulation mileage payments. The experience pools in the twin delayed deep deterministic policy gradient were categorized by using the multiple experience pool probability experience replay twin delayed deep deterministic policy gradient (ME-TD3) algorithm. Samples from different experience pools were used for training by using different probabilities, and training efficiency as well as the optimum-seeking correctness rate for intelligent agents was improved, and therefore the quality of the optimal solution was improved. Finally, the two-area load frequency control model and the power grid model of a certain province were used to verify the performance of the proposed algorithm.
    © 2021 Chin. Soc. for Elec. Eng.

    ...
  • 排序方式:
  • 26
  • /