Challenges in data-driven integrated water level control of river channel networks:dynamics modeling in directed graph structures

项目来源

日本学术振兴会基金(JSPS)

项目主持人

村松正吾

项目受资助机构

新潟大学

立项年度

2024

立项时间

未公开

项目编号

24K21314

研究期限

未知 / 未知

项目级别

国家级

受资助金额

25870000.00日元

学科

情報科学、情報工学およびその関連分野

学科代码

未公开

基金类别

挑戦的研究(開拓)

关键词

信号処理 ; 制御理論 ; 有向グラフ構造 ; 動的システム ; データ駆動モデリング ;

参与者

安田浩保;田中雄一;永原正章;劉雪峰

参与机构

大阪大学;広島大学;東京女子大学

项目标书摘要:Outline of Research at the Start:本研究では,有向グラフ信号処理の新体系を確立し,有向グラフ上の動力学モデリング手法を創出する.この動機付けは,河川の流域治水をサイバーフィジカルシステム(CPS)により実現することにある.近年,世界的に大規模な河川災害が頻発し,既存の治水技術の効力不足が露呈している.日本政府はこの状況を打開するため,流域治水を提唱し,河道外への放水制御の体系化を急いでいる.しかし現状は,水系内の河道網水位の動態を一体的に把握できるデータ解析手法は存在せず,水位分布の制御の可能性について理論的に議論できない.そこで本研究では,河道網水位の動態を一体表現する時間発展式の導出に挑戦する。

  • 排序方式:
  • 1
  • /
  • 1.Exponential Convergence of Augmented Primal-dual Gradient Algorithms for Partially Strongly Convex Functions

    • 关键词:
    • Convex optimization;Convex functions;Distributed optimization;Equality constraints;Exponential convergence;Global exponential convergence;Gradient algorithm;Lipschitz conditions;Objective functions;Primal-dual
    • Li, Mengmou;Nagahara, Masaaki
    • 《2025 American Control Conference, ACC 2025》
    • 2025年
    • July 8, 2025 - July 10, 2025
    • Denver, CO, United states
    • 会议

    We show that the augmented primal-dual gradient algorithms can achieve global exponential convergence with partially strongly convex functions. In particular, the objective function only needs to be strongly convex in the subspace satisfying the equality constraint and can be generally convex elsewhere, provided the global Lipschitz condition for the gradient is satisfied. This condition implies that states outside the equality subspace will converge towards it exponentially fast. The analysis is then applied to distributed optimization, where the partially strong convexity can be relaxed to the restricted secant inequality condition, which is not necessarily convex. This work unifies global exponential convergence results for some existing centralized and distributed algorithms. © 2025 AACC.

    ...
  • 2.Joint Graph Estimation and Signal Restoration for Robust Federated Learning

    • 关键词:
    • Data accuracy;Data aggregation;Federated learning;Learning systems;Signal analysis;Signal reconstruction;Aggregation methods;Central servers;Difference-of-convex;Distributed machine learning;Graph learning;Learning paradigms;Local model;Modeling parameters;Robust aggregation;Signal restoration
    • Fukuhara, Tsutahiro;Hara, Junya;Higashi, Hiroshi;Tanaka, Yuichi
    • 《35th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2025》
    • 2025年
    • August 31, 2025 - September 3, 2025
    • Istanbul, Turkey
    • 会议

    We propose a robust aggregation method for model parameters in federated learning (FL) under noisy communications. FL is a distributed machine learning paradigm in which a central server aggregates local model parameters from multiple clients. These parameters are often noisy and/or have missing values during data collection, training, and communication between the clients and server. This may cause a considerable drop in model accuracy. To address this issue, we learn a graph that represents pairwise relationships between model parameters of the clients during aggregation. We realize it with a joint problem of graph learning and signal (i.e., model parameters) restoration. The problem is formulated as a difference-of-convex (DC) optimization, which is efficiently solved via a proximal DC algorithm. Experimental results on MNIST and CIFAR10 datasets show that the proposed method outperforms existing approaches by up to 2-5% in classification accuracy under biased data distributions and noisy conditions. © 2025 IEEE.

    ...
  • 3.Dictionary Learning for Directed Graph Signals via Augmented GFT

    • 关键词:
    • Bandpass filters;Fourier transforms;Graph algorithms;Graphic methods;Laplace transforms;Adjacency matrix;Augmented graph;Dictionary learning;Filter designs;Filtering method;Graph Fourier transforms;Graph Laplacian;Graph laplacians;Learning approach;Undirected graph
    • Naito, Tsubasa;Ito, Ryuto;Tanaka, Yuichi;Muramatsu, Shogo
    • 《2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2024》
    • 2024年
    • December 3, 2024 - December 6, 2024
    • Macau, China
    • 会议

    This paper proposes a method for designing directed graph (digraph) filters through a dictionary learning approach. Practical digraph filtering methods have not yet been established because of the difficulties posed by asymmetry of the adjacency matrix of a digraph. Augmented graph Fourier transform (AuGFT), proposed by Kitamura et al., defines a new graph Laplacian and extends the conventional graph Fourier transform (GFT) for undirected graph signals to directed ones. However, challenges remain in filter design through AuGFT, particularly in determining the skew intensity parameters. Therefore, this study aims to establish a design method for digraph filters with AuGFT. Filters are parameterized with AuGFT, and parameter optimization is performed using a dictionary learning technique. To verify the effectiveness of the proposed method, experimental results of digraph filtering are shown for temperature data of contiguous US and the GSP-traffic-dataset. Compared with undirected graph filtering, the proposed method is shown to have high steerability in designing digraph filters. © 2024 IEEE.

    ...
  • 排序方式:
  • 1
  • /