Challenges in data-driven integrated water level control of river channel networks:dynamics modeling in directed graph structures

项目来源

日本学术振兴会基金(JSPS)

项目主持人

村松正吾

项目受资助机构

新潟大学

立项年度

2024

立项时间

未公开

项目编号

24K21314

研究期限

未知 / 未知

项目级别

国家级

受资助金额

25870000.00日元

学科

情報科学、情報工学およびその関連分野

学科代码

未公开

基金类别

挑戦的研究(開拓)

关键词

信号処理 ; 制御理論 ; 有向グラフ構造 ; 動的システム ; データ駆動モデリング ;

参与者

安田浩保;田中雄一;永原正章;劉雪峰

参与机构

大阪大学;広島大学;東京女子大学

项目标书摘要:Outline of Research at the Start:本研究では,有向グラフ信号処理の新体系を確立し,有向グラフ上の動力学モデリング手法を創出する.この動機付けは,河川の流域治水をサイバーフィジカルシステム(CPS)により実現することにある.近年,世界的に大規模な河川災害が頻発し,既存の治水技術の効力不足が露呈している.日本政府はこの状況を打開するため,流域治水を提唱し,河道外への放水制御の体系化を急いでいる.しかし現状は,水系内の河道網水位の動態を一体的に把握できるデータ解析手法は存在せず,水位分布の制御の可能性について理論的に議論できない.そこで本研究では,河道網水位の動態を一体表現する時間発展式の導出に挑戦する。

  • 排序方式:
  • 1
  • /
  • 1.Data Informativity for Analysis and Design of Positive Systems

    • 关键词:
    • Informatization;Problem solving;Analysis/design;Condition;Data informativity;Data-driven design;Design problems;Linear-programming;Positive observation;Positive stabilization;Positive systems;Positivity
    • Iwata, Takumi;Azuma, Shun-Ichi;Nagahara, Masaaki;Peaucelle, Dimitri;Ebihara, Yoshio
    • 《IEEE Control Systems Letters》
    • 2025年
    • 期刊

    This paper studies data informativity of positive systems using linear programming (LP). The concept called data informativity represents the sufficiency of a given dataset to solve analysis/design problems. We provide the necessary and sufficient conditions for the data-driven analysis and design problems of positive systems to be solvable. Moreover, we clarify that these conditions are characterized by LP problems. We provide numerical examples to demonstrate the effectiveness of our approaches. © 2017 IEEE.

    ...
  • 2.Physics-informed neural networks for inversion of river flow and geometry with shallow water model

    • 关键词:
    • BATHYMETRY; VELOCITIES
    • Ohara, Y.;Moteki, D.;Muramatsu, S.;Hayasaka, K.;Yasuda, H.
    • 《PHYSICS OF FLUIDS》
    • 2024年
    • 36卷
    • 10期
    • 期刊

    The river flow transports sediment, resulting in the formation of alternating sandbars in the riverbed. The underlying physics is characterized by the interaction between flow and river geometry, necessitating an understanding of their inseparable relationship. However, the dynamics of river flow with alternating sandbars are hard to understand due to the difficulty of measuring flow depth and riverbed geometry during floods with current technology. This study implements an innovative approach utilizing physics-informed neural networks (PINNs) to estimate important hydraulic variables in rivers that are difficult to measure directly. The method uses sparse yet obtainable flow velocity and water level data. The governing equations of motion, continuity, and the constant discharge condition based on the mass conservation principle are integrated into the neural network as physical constraints. This approach enables the completion of sparse velocity fields and the inversion of flow depth, riverbed elevation, and roughness coefficients without requiring direct training data for these variables. Validation was performed using model experiment data and numerical simulations derived from these experiments. Results indicate that the accuracy of the estimations is relatively robust to the number of training data points, provided their spatial resolution is finer than the wavelength of the sandbars. The inclusion of mass conservation as a redundant constraint significantly improved the convergence and accuracy of the model. This PINNs-based approach, using measurable data, offers a new way to quantify complex river flows on alternating sandbars without significant updates to conventional methods, providing new insights into river physics. C2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

    ...
  • 排序方式:
  • 1
  • /