代数微分方程与正规族理论中若干问题研究
项目来源
广(略)技(略)
项目主持人
林(略)
项目受资助机构
广(略)药(略)
项目编号
2(略)A(略)3(略)4(略)
立项年度
2(略)
立项时间
未(略)
研究期限
未(略) (略)
项目级别
省(略)
受资助金额
1(略)0(略)
学科
其(略)
学科代码
未(略)
基金类别
广(略)然(略)金(略)项(略)
关键词
代(略)方(略) (略)理(略) (略)e(略)i(略)i(略)r(略)i(略)e(略)t(略) (略)o(略)l(略)m(略) (略)o(略)
参与者
袁(略)
参与机构
广(略)
项目标书摘要:20(略)udryashov(略)复的自治常微分方程(略)了一部分亚纯解的结(略)很多数理方程组以及(略)分方程组,运用复化(略),研究对于许多有物(略)及偏微分方程组如经(略)探讨其亚纯解的存在(略)解的形式后,我们将(略)量数理方程组显式精(略)进行演算来确定新的(略)画图形,以便更好研(略)究的内容一部分是跨(略)部分是对原有领域相(略)是若能在有应用的工(略)理方程组经适当变量(略)方程亚纯解的存在性(略)方程增长性的估计的(略)
Applicati(略): Since 2(略)ryashov e(略)tudied th(略)utions of(略)athematic(略)s and com(略)mous ordi(略)ential eq(略)pectively(略)ed the re(略)rtial mer(略)lutions.H(略)ind that (略)thematica(略) and part(略)ntial equ(略) practica(略)meaning,t(略)ion of th(略)ethod is (略)Therefore(略)order mat(略)quations (略)al backgr(略)rtial dif(略)quations,(略) existenc(略)sentation(略)eromorphi(略),can be s(略)r proper (略)bstitutio(略)ex.And af(略)the solut(略) will fur(略)fy and st(略)e a large(略)explicit (略)e solutio(略)matical e(略)e related(略)al softwa(略) the calc(略)determine(略)lution an(略)3d animat(略)f the fun(略)ion,so as(略)he soluti(略)roperties(略)e researc(略)f this pr(略)terdiscip(略)cross-dir(略)oblems,an(略)t is to c(略)deepen th(略)in the or(略)d.Especia(略)applicati(略)eering,ph(略)ificance (略)ackground(略)tical equ(略)r appropr(略)le substi(略)usses the(略)of meromo(略)ions of n(略)fferentia(略)and repre(略)nd the gr(略)ebraic di(略)equation (略)problem o(略)rough.
项目受资助省
广(略)
1.代数微分方程与正规族理论中若干问题研究结题报告(Studies on algebraic differential equations and some problems in normal family theory)
- 关键词:
- 代数微分方程、正规族理论、algebraic differential equation、Formal family theory
- 林剑鸣;袁文俊;
- 《广州中医药大学;广州大学;》
- 2018年
- 报告
2010年以来,N.A.Kudryashov等分别对多类数理方程和复的自治常微分方程的精确解进行研究,得到了一部分亚纯解的结果。然而,我们发现对于很多数理方程组以及有应用性物理意义的偏微分方程组,运用复化法研究的还是不多。因此,研究对于许多有物理背景的高阶数理方程以及偏微分方程组如经适当变量替换复化后都可探讨其亚纯解的存在性与表现形式。及在得出解的形式后,我们将进一步分类研究并给出大量数理方程组显式精确解,运用相关数学软件进行演算来确定新的解并绘制函数解的三维动画图形,以便更好研究解的性质。本项目所研究的内容一部分是跨学科、跨方向的问题,一部分是对原有领域相关问题的继续深入。特别是若能在有应用的工程、物理背景意义下的数理方程组经适当变量替换后,探讨非线性微分方程亚纯解的存在性与表示形式以及代数微分方程增长性的估计的问题中有所突破。 Since 2010,n.a.Kudryashov et al.have studied the exact solutions of multiple mathematical equations and complex autonomous ordinary differential equations respectively,and obtained the results of partial meromorphic solutions.However,we find that for many mathematical equations and partial differential equations with practical physical meaning,the application of the complex method is still rare.Therefore,many high order mathematical equations with physical background and partial differential equations,such as the existence and representation of their meromorphic solutions,can be studied after proper variable substitution and complex.And after we get the solution form,we will further classify and study and give a large number of explicit and accurate solutions of mathematical equations,The related mathematical software performs the calculation to determine the new solution and draw the 3d animation graph of the function solution,so as to study the solution better Properties.Part of the research content of this project is interdisciplinary and cross-directional problems,and Part of it is to continue to deepen the problems in the original field.Especially if can application in engineering,physical significance under the background of mathematical equations after appropriate variable substitution,discusses the existence of meromorphic solutions of nonlinear differential equation and representation,and the growth of algebraic differential equation estimation problem of a breakthrough.
...