无人机AdHoc网络的数据传输容错技术研究

项目来源

浙(略)然(略)金

项目主持人

侯(略)

项目受资助机构

浙(略)大(略)

立项年度

2(略)

立项时间

未(略)

项目编号

L(略)F(略)0(略)

项目级别

省(略)

研究期限

未(略) (略)

受资助金额

5(略)万(略)

学科

信(略)部

学科代码

未(略)

基金类别

青(略)项(略)

关键词

无(略);(略) (略) (略);(略)容(略) (略)A(略) (略)h(略)n(略)o(略);(略)t(略)a(略) (略)e(略)c(略)e(略)o(略)y

参与者

未(略)

参与机构

未(略)

项目标书摘要:根据(略)和Ad Hoc 网(略)研究详细分析了无人(略)特点和主要技术应用(略)c 网络在不用应用(略)本报告首先研究了三(略)靠的基于概率分流的(略)载较重路径上节点的(略)机Ad hoc 网(略);提出一种节点中继(略)个网络节点作为中继(略)CH-E分簇路由算(略)网络分布的无人机节(略)数目,更加合理的构(略)针对无人机节点在部(略)复覆盖度,在LEA(略)础上引入神经网络层(略)论和节点剩余能量方(略)模型对监测的数据进(略)输时的容错机制和可(略)长网络寿命。再次,(略) 网络对实时性、鲁(略)求较高的特征,提出(略)化的无线传感器网络(略)将跨层优化的思想融(略)通过在状态转移概率(略)如节点剩余能量、跳(略)数,并以跨层感知的(略)量,作为状态转移公(略)依据,从而尽量避免(略)以及由数据重发导致(略)路由代价公式,通过(略)网络进行快速高效的(略)统蚁群算法过早的陷(略)

Applicati(略): Accordi(略)ood mobil(略)bility of(略)e mobile (略)zing char(略) of Ad Ho(略)he charac(略)f UAV Ad (略) and its (略)ation tec(略)ere analy(略)il.Aiming(略)work arch(略)aracteris(略) Ad Hoc n(略)out appli(略)arios,thi(略)irst stud(略)rotocol a(略)n efficie(略)able load(略)routing a(略)sed on pr(略)hunt.To s(略)ta transm(略)s of node(略)y loaded (略)mprove th(略)f path en(略)ption in (略)networks,(略)y number (略)outing al(略) proposed(略)that the (略)ork node (略) relay ro(略)proved LE(略)ering rou(略)thm was a(略)stimate t(略)number of(略)ads accor(略) distribu(略) nodes in(略) network,(略)re reason(略)ural clus(略)re.Second(略)t the hig(略)nd overla(略)of UAV no(略)oyment,th(略)cal struc(略)ral netwo(略)y-driven (略)residual (略)me of nod(略)roduced b(略)CH and TE(略)s.The BP (略)ork model(略)o fuse th(略) data,imp(略)ult-toler(略)sm and re(略)f data tr(略)balance t(略)onsumptio(略)and prolo(略)ork life.(略)ing at th(略)irement o(略),robustne(略)gy balanc(略) Hoc netw(略)ng protoc(略)sed on an(略)gorithm a(略)yer optim(略) proposed(略)ea of cro(略)timizatio(略)rated int(略)olony alg(略)dding a v(略)udgment p(略)uch as re(略)gy,hops a(略)n distanc(略)to the st(略)ion proba(略)ula,the a(略)tained th(略)ink commu(略)ality by (略) percepti(略)rves as a(略) basis fo(略) the next(略)n the sta(略)on formul(略)avoid the(略) caused b(略)tion cong(略)the energ(略)ed by dat(略)tting as (略)ible.At t(略)e,the rou(略)ormula wa(略)to find t(略)solution (略) efficien(略)ing multi(略)ers at th(略),so as to(略)shortcomi(略)tional an(略)gorithm f(略) local op(略)turely.

项目受资助省

浙(略)

  • 排序方式:
  • 1
  • /
  • 1.无人机Ad Hoc网络的数据传输容错技术研究结题报告(Research on Data Transfer Fault Tolerance Technology of UAV Ad Hoc Network)

    • 关键词:
    • 无人机、Ad hoc 网络、数据容错技术、UAV、Ad hoc network、data fault tolerance technology
    • 侯鑫;
    • 《浙江工商大学;》
    • 2018年
    • 报告

    根据无人机良好的移动可控性和Ad Hoc 网络的移动自组织特性,本研究详细分析了无人机Ad Hoc 网络的特点和主要技术应用,针对无人机Ad Hoc 网络在不用应用场景下的网络架构特征,本报告首先研究了三种协议算法:采用高效可靠的基于概率分流的负载均衡路由算法分担负载较重路径上节点的数据传输任务,改善无人机Ad hoc 网络路径能量消耗的均衡性;提出一种节点中继次数均衡路由算法保证整个网络节点作为中继路由;采用改进的LEACH-E分簇路由算法,根据Ad hoc 网络分布的无人机节点情况估算出最优簇头的数目,更加合理的构造簇结构。其次,本研究针对无人机节点在部署时具有较高的交叉和重复覆盖度,在LEACH和TEEN协议的基础上引入神经网络层次结构、突发事件驱动理论和节点剩余能量方案。利用BP 神经网络模型对监测的数据进行融合处理,提高数据传输时的容错机制和可靠性,平衡节点能耗,延长网络寿命。再次,针对无人机Ad Hoc 网络对实时性、鲁棒性及平衡能耗等方面要求较高的特征,提出了基于蚁群算法和跨层优化的无线传感器网络路由协议ABCRO,并将跨层优化的思想融入到蚁群算法中。该算法通过在状态转移概率公式中增加多种判断参数如节点剩余能量、跳数、节点的欧式距离等参数,并以跨层感知的方式获取当前链路通信质量,作为状态转移公式选择下一跳节点的重要依据,从而尽量避免通信阻塞带来的数据延迟以及由数据重发导致的能量浪费。同时,改进路由代价公式,通过同时判断多种参数实现对网络进行快速高效的寻找最优解,从而避免传统蚁群算法过早的陷入局部最优的缺点。 According to the good mobile controllability of UAV and the mobile self-organizing characteristics of Ad Hoc network,the characteristics of UAV Ad Hoc network and its main application technologies were analyzed in detail.Aiming at the network architecture characteristics of UAV Ad Hoc network without application scenarios,this project first studied three protocol algorithms:an efficient and reliable load balancing routing algorithm based on probability shunt.To share the data transmission tasks of nodes on heavily loaded paths and improve the balance of path energy consumption in UAV Ad hoc networks,a node relay number balancing routing algorithm was proposed to ensure that the entire network node was used as relay routing.An improved LEACH-E clustering routing algorithm was adopted to estimate the optimal number of cluster heads according to the distribution of UAV nodes in the Ad hoc network,which is more reasonable.Structural cluster structure.Secondly,aiming at the high overlap and overlap coverage of UAV nodes in deployment,the hierarchical structure of neural network,emergency-driven theory and residual energy scheme of nodes were introduced based on LEACH and TEEN protocols.The BP neural network model was used to fuse the monitored data,improve the fault-tolerant mechanism and reliability of data transmission,balance the energy consumption of nodes,and prolong the network life.Thirdly,aiming at the high requirement of real-time,robustness and energy balance in UAV Ad Hoc network,a routing protocol ABCRO based on ant colony algorithm and cross-layer optimization was proposed,and the idea of cross-layer optimization was integrated into the ant colony algorithm.By adding a variety of judgment parameters such as residual energy,hops and Euclidean distance of nodes to the state transition probability formula,the algorithm obtained the current link communication quality by cross-layer perception,which serves as an important basis for selecting the next hop node in the state transition formula,so as to avoid the data delay caused by communication congestion and the energy wave caused by data retransmitting as far as possible.At the same time,the routing cost formula was improved to find the optimal solution quickly and efficiently by judging multiple parameters at the same time,so as to avoid the shortcoming of traditional ant colony algorithm falling into local optimum prematurely.

    ...
  • 排序方式:
  • 1
  • /