港口环境AGV智能感知无轨导航技术

项目来源

国(略)研(略)((略)D(略)

项目主持人

刘(略)

项目受资助机构

浙(略)

项目编号

2(略)Y(略)3(略)0(略)

立项年度

2(略)

立项时间

未(略)

研究期限

未(略) (略)

项目级别

国(略)

受资助金额

1(略)0(略)

学科

智(略)人

学科代码

未(略)

基金类别

未(略)

关键词

自(略) (略)口(略) (略)图(略)a(略)n(略)u(略)a(略)a(略)n(略)A(略);(略)p(略)g

参与者

王(略)欢

参与机构

未(略)

项目标书摘要:自主(略)能技术的一个重要发(略)业的生产模式正在面(略)制的转变,对智能、(略)求。拥有自主移动技(略)来智能制造中不可替(略)段。除了制造业以外(略)术还可广泛应用于医(略)及港口运输、载人航(略)有广阔发展前景。在(略)最首要任务是解决自(略)环境下,基于GPS(略)精度,因此高精度地(略)要。本报告本报告将(略)\t第一章介绍面向(略)点重识别问题,该问(略)环检测,减少地图构(略)了基于神经网络的地(略)算法进行了对比,本(略)率上都获得了提升。(略)地图的定位方法,该(略)之间的关联性使视觉(略)从而屏蔽视觉传感器(略)环境变化因素,从而(略)法成为可能。该算法(略)跨度一年的定位。\(略)和结论部分,总结本(略)及所取得的效果。

Applicati(略): Autonom(略)robots or(略)n importa(略)ent direc(略)elligent (略)At presen(略)ction mod(略)rld's man(略)industry (略) shift fr(略)duction t(略)tion,and (略)strong de(略)telligent(略)alized ma(略).Robots w(略)ous mobil(略)y will be(略)eplaceabl(略) equipmen(略)ation in (略)of intell(略)acturing.(略) to manuf(略)vanced mo(略)technolog(略)be widely(略)spitals,h(略)cs and ot(略) areas,as(略)ecial are(略)port tran(略)manned sp(略)isaster r(略)with broa(略)nt prospe(略)technical(略)most impo(略)of intell(略)s to solv(略)tioning.I(略)ex and va(略)g environ(略)sed posit(略)nology ca(略)the navig(略)acy,so hi(略)n map is (略)or robot (略) technolo(略)ort will (略) followin(略)ions in t(略)The first(略)troduces (略)n re-iden(略)problem f(略) sensor i(略)This prob(略)the close(略)ction in (略)ction and(略)e error a(略) of map c(略).The meth(略)ion re-id(略)n based o(略)twork is (略)and compa(略)her algor(略)lgorithm (略)ject has (略)ed in acc(略)fficiency(略) chapter (略)the locat(略)for heter(略)ps,which (略)rrelation(略)terogeneo(略)nformatio(略) visual p(略)on the la(略)reby shie(略)arge numb(略)onmental (略)t the vis(略)has in th(略)vironment(略)n-based l(略)sitioning(略)ssible.Th(略) achieves(略) position(略) span in (略)environme(略)III is th(略)nd conclu(略)f this re(略)marizes t(略)technolog(略)ects achi(略)s report.

项目受资助省

浙(略)

  • 排序方式:
  • 1
  • /
  • 1.港口环境AGV智能感知无轨导航技术进展报告(Port Environment AGV IntelliSense Trackless Navigation Technology+Technology Report)

    • 关键词:
    • 自主导航、港口agv、建图、autonomous navigation、AGV、mapping
    • 刘勇;王越;尹欢;
    • 《浙江大学;》
    • 2019年
    • 报告

    自主移动机器人或AGV是智能技术的一个重要发展方向。在技术层面,智能AGV的最关键功能是自定位。在复杂多变的作业环境下,基于GPS的定位技术无法满足导航精度,因此高精度地图是机器人定位的必要。但目前,在港口环境下,高精度地图构建以及AGV定位仍然存在诸多问题。针对这些问题,本报告将介绍如下几方面的贡献:1、第一章介绍地图构建与定位的基本框架,重点介绍地图模型,该模型面向长期可靠运行目标设计,充分考虑了环境的缓变特性,并且在地图难以精确构建的前提下,对定位的方式进行了思考和设计,从而提升鲁棒性。2、第二章介绍面向三维激光传感器信息的地点重识别问题,该问题解决了地图构建中的闭环检测,减少地图构建的误差累积。重点介绍了基于神经网络的地点重识别方法,并与其它算法进行了对比,本课题的算法在准确性和效率上都获得了提升。3、第三章介绍了在大范围场景下,如何压缩激光点云地图,以实现更高效率的自主定位。重点介绍了基于整数规划方法和随机森林的压缩框架,并在数据集上进行了完整测试。4、第四章为本报告的总结和结论部分,总结本报告所介绍的各方面技术及所取得的效果。 Autonomous mobile robot or automated guided vehicle(AGV)is an important development direction of intelligent techniques.At the technical level,the most critical task of intelligent AGV is self-positioning.In the complex and changeable environments,the GPS based positioning techniques can not meet the accuracy requirement for robot navigation,therefore,the high precision map is the necessary componnent for robot localization.But so far,in the port environment,there are still some problems with AGV localization and mapping with high precision.To solve these problems,this report will introduce the contribitions as follows:1、The basic framework of localization and mapping is introduced in the first chapter,focusing on the mapping model.This proposed model is designed for long-term operations,and with the full consideration of changeable environments.And on the premise that the map is difficult to construct accurately,we design the localization method,thus improving the robustness.2、In the second chapter,we introduce the the 3D LiDAR sensor based place recognition.The place recognition solvesthe loop closure detection in mapping,which can reduce the accumulated error in map construction.This method focuses on the deep learning based place recognition,with the comparison with other methods.This method improves the efficiency and effictiveness of place recognition.3、In the third chapter,we introduce how to compress 3D LiDAR map in large scale environments,thus achieving self-positioning with higher efficiency.This method focuses on the linear programming and random forest based method,and is validated on the datasets thoroughly.4、The final conclusions are presented in the fourth chapter,which include the introduced methods in this report.

    ...
  • 2.港口环境AGV智能感知无轨导航技术报告(Port Environment AGV IntelliSense Trackless Navigation Technology+Technology Report)

    • 关键词:
    • 自主导航、港口agv、建图、autonomous navigation、AGV、mapping
    • 刘勇;王越;尹欢;
    • 《浙江大学;》
    • 2019年
    • 报告

    自主移动机器人或AGV是智能技术的一个重要发展方向。目前,世界制造业的生产模式正在面临着从批量生产向用户定制的转变,对智能、个性化制造有着强劲的需求。拥有自主移动技术的机器人,必将成为未来智能制造中不可替代的重要装备和自动化手段。除了制造业以外,先进移动操作机器人技术还可广泛应用于医院、家政等服务领域,以及港口运输、载人航天、救灾等特殊领域,具有广阔发展前景。在技术层面,智能AGV的最首要任务是解决自定位。在复杂多变的作业环境下,基于GPS的定位技术无法满足导航精度,因此高精度地图是机器人定位技术的必要。本报告本报告将介绍如下几方面的贡献: \t第一章介绍面向三维激光传感器信息的地点重识别问题,该问题解决了地图构建中的闭环检测,减少地图构建的误差累积。重点介绍了基于神经网络的地点重识别方法,并与其它算法进行了对比,本课题的算法在准确性和效率上都获得了提升。 \t第二章介绍面向异构地图的定位方法,该方法利用异构传感器信息之间的关联性使视觉能够在激光地图上定位,从而屏蔽视觉传感器在实际环境中存在的大量环境变化因素,从而使基于视觉的长期定位方法成为可能。该算法在室外环境中实现了时间跨度一年的定位。 \t第三章为本报告的总结和结论部分,总结本报告所介绍的各方面技术及所取得的效果。 Autonomous mobile robots or AGVs are an important development direction of intelligent technology.At present,the production mode of the world's manufacturing industry is facing a shift from mass production to customization,and there is a strong demand for intelligent and personalized manufacturing.Robots with autonomous mobile technology will become an irreplaceable important equipment and automation in the future of intelligent manufacturing.In addition to manufacturing,advanced mobile robot technology can also be widely used in hospitals,home economics and other service areas,as well as special areas such as port transportation,manned spaceflight,disaster relief,etc.,with broad development prospects.At the technical level,the most important task of intelligent AGV is to solve self-positioning.In the complex and varied working environment,GPS-based positioning technology can not meet the navigation accuracy,so high-precision map is necessary for robot positioning technology.This report will present the following contributions in this report: The first chapter introduces the location re-identification problem for 3D laser sensor information.This problem solves the closed-loop detection in map construction and reduces the error accumulation of map construction.The method of location re-identification based on neural network is introduced,and compared with other algorithms,the algorithm of this subject has been improved in accuracy and efficiency. The second chapter introduces the location method for heterogeneous maps,which uses the correlation between heterogeneous sensor information to enable visual positioning on the laser map,thereby shielding the large number of environmental changes that the visual sensor has in the actual environment.Make vision-based long-term positioning methods possible.The algorithm achieves a one-year positioning of time span in an outdoor environment. Chapter III is the summary and conclusion part of this report.It summarizes the various technologies and effects achieved in this report.

    ...
  • 排序方式:
  • 1
  • /